The Community for Technology Leaders
2009 IEEE 25th International Conference on Data Engineering (2009)
Mar. 29, 2009 to Apr. 2, 2009
ISSN: 1084-4627
ISBN: 978-0-7695-3545-6
pp: 246-257
Model-based views have recently been proposed as an effective method for querying noisy sensor data. Commonly used models from the AI literature (e.g., the hidden Markov model) expose to applications a stream of probabilistic and correlated state estimates computed from the sensor data. Many applications want to detect sophisticated patterns of states from these Markovian streams. Such queries are called event queries. In this paper, we present a new Markovian stream storage manager, Caldera. We develop and evaluate Caldera as a component of Lahar, a Markovian stream event query processing system developed in previous work. At the heart of Caldera is a set of access methods for Markovian streams that can improve event query performance by orders of magnitude compared to existing techniques, which must scan the entire stream. Our access methods use new adaptations of traditional B+ tree indexes, and a new index, called the Markov-chain index. They efficiently extract only the relevant timesteps from a stream, while retaining the stream's Markovian properties. We have implemented our prototype system on BDB and demonstrate its effectiveness on both synthetic data and real data from a building-wide RFID deployment.
Streams, Correlations, Temporal, Indexing

M. Philipose, J. Letchner, M. Balazinska and C. Re, "Access Methods for Markovian Streams," 2009 IEEE 25th International Conference on Data Engineering(ICDE), vol. 00, no. , pp. 246-257, 2009.
120 ms
(Ver 3.3 (11022016))