The Community for Technology Leaders
2013 IEEE 29th International Conference on Data Engineering (ICDE) (2002)
San Jose, California
Feb. 26, 2002 to Mar. 1, 2002
ISBN: 0-7695-1531-2
pp: 0441
Evaggelia Pitoura , University of Ioannina
Ioannis Fudos , University of Ioannina
Leonidas Palios , University of Ioannina
We propose a novel approach to shape-based image retrieval that builds upon a similarity criterion which is based on the average point set distance. Compared to traditional techniques, such as dimensionality reduction, our method exhibits better behavior in that it maintains the average topology of shapes independently of the number of points used to represent them and is more resilient to noise. An efficient algorithm is presented based on an incremental ``fattening'' of the query shape until the best match is discovered. The algorithm uses simplex range search techniques and fractional cascading to provide an average poly-logarithmic time complexity on the total number of shape vertices. The algorithm is extended to perform additional fast approximate matching, when there is no image sufficiently similar to the query image. We present techniques for the efficient external storage of the shape base and of the auxiliary geometric data structures used by the algorithm. Finally, we show how our approach can be used for processing queries, containing pairwise relations of object boundaries such as contain, tangent, and overlap. Such queries are either extracted from some user drafted sketch or defined explicitly by the user. Alternative methods are presented for forming query execution plans.
image retrieval, shape-based retrieval, large image bases, query processing.
Evaggelia Pitoura, Ioannis Fudos, Leonidas Palios, "Geometric-Similarity Retrieval in Large Image Bases", 2013 IEEE 29th International Conference on Data Engineering (ICDE), vol. 00, no. , pp. 0441, 2002, doi:10.1109/ICDE.2002.994757
87 ms
(Ver 3.3 (11022016))