The Community for Technology Leaders
2013 IEEE 29th International Conference on Data Engineering (ICDE) (2001)
Heidelberg, Germany
Apr. 2, 2001 to Apr. 6, 2001
ISBN: 0-7695-1001-9
pp: 0359
Anthony K.H. Tung , Simon Fraser University
Jean Hou , Simon Fraser University
Jiawei Han , Simon Fraser University
Abstract: Clustering in spatial data mining is to group similar objects based on their distance, connectivity, or their relative density in space. In the real world, there exist many physical obstacles such as rivers, lakes and high-ways, and their presence may affect the result of clustering substantially. In this paper, we study the problem of clustering in the presence of obstacles and define it as a COD (Clustering with Obstructed Distance) problem. As a solution to this problem, we propose a scalable clustering algorithm, called COD-CLARANS . We discuss various forms of pre-processed information that could enhance the efficiency of COD-CLARANS . In thestrictest sense, the COD problem can be treated as a change in distance function and thus could be handled by current clustering algorithms by changing the distance function. However, we show that by pushing the task of handling obstacles into COD-CLARANS instead of abstracting it at the distance function level, more optimization can be done in the form of a pruning function E'. We conduct various performance studies to show that COD-CLARANS is both efficient and effective.
Anthony K.H. Tung, Jean Hou, Jiawei Han, "Spatial Clustering in the Presence of Obstacles", 2013 IEEE 29th International Conference on Data Engineering (ICDE), vol. 00, no. , pp. 0359, 2001, doi:10.1109/ICDE.2001.914848
108 ms
(Ver 3.3 (11022016))