The Community for Technology Leaders
2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS) (2016)
Nara, Japan
June 27, 2016 to June 30, 2016
ISSN: 1063-6927
ISBN: 978-1-5090-1484-2
pp: 405-414
Developers of cloud-scale applications face a difficult decision of which kind of storage to use, summarised by the CAP theorem. Currently the choice is between classical CP databases, which provide strong guarantees but are slow, expensive, and unavailable under partition, and NoSQL-style AP databases, which are fast and available, but too hard to program against. We present an alternative: Cure provides the highest level of guarantees that remains compatible with availability. These guarantees include: causal consistency (no ordering anomalies), atomicity (consistent multi-key updates), and support for high-level data types (developer friendly API) with safe resolution of concurrent updates (guaranteeing convergence). These guarantees minimise the anomalies caused by parallelism and distribution, thus facilitating the development of applications. This paper presents the protocols for highly available transactions, and an experimental evaluation showing that Cure is able to achieve scalability similar to eventually-consistent NoSQL databases, while providing stronger guarantees.
Protocols, Databases, Clocks, Semantics, Programming, Convergence, Servers
Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhongmiao Li, Tyler Crain, Annette Bieniusa, Nuno Preguica, Marc Shapiro, "Cure: Strong Semantics Meets High Availability and Low Latency", 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS), vol. 00, no. , pp. 405-414, 2016, doi:10.1109/ICDCS.2016.98
81 ms
(Ver 3.3 (11022016))