The Community for Technology Leaders
2013 IEEE 33rd International Conference on Distributed Computing Systems (2007)
Toronto, Canada
June 25, 2007 to June 27, 2007
ISBN: 0-7695-2837-3
pp: 51
Lei Guo , Ohio State University
John Tracey , IBM T. J. Watson Research Center
Zhen Xiao , IBM T. J. Watson Research Center
<p>Instant messaging (IM) has become increasingly popular due to its quick response time, its ease of use, and possibility of multitasking. It is estimated that there are several millions of instant messaging users who use IM for various purposes: simple requests and responses, scheduling face to face meetings, or just to check the availability of colleagues and friends.</p> <p>Despite its popularity and user base, little has been done to characterize IM traffic. One reason might be its relatively small traffic volume, although this is changing as more users start using video or voice chats and file attachments. Moreover, all major instant messaging systems route text messages through central servers. While this facilitates firewall traversal and gives instant messaging companies more control, it creates a potential bottleneck at the instant messaging servers. This is especially so for large instant messaging operators with tens of millions of users and during flash crowd events. Another reason for the lack of previous studies is the difficulty in getting access to instant messaging traces due to privacy concerns.</p> <p>In this paper, we analyze the traffic of two popular instant messaging systems, AOL Instant Messenger (AIM) and MSN/Windows Live Messenger, from thousands of employees in a large enterprise. We found that most instant messaging traffic is due to presence, hints, or other extraneous traffic. Chat messages constitute only a small percentage of the total IM traffic. This means, during overload, IM servers can protect the instantaneous nature of the communication by dropping extraneous traffic. We also found that the social network of IM users does not follow a power law distribution. It can be characterized by a Weibull distribution. Our analysis sheds light on instant messaging system design and optimization and provides a scientific basis for instant messaging workload generation.</p>
Lei Guo, John Tracey, Zhen Xiao, "Understanding Instant Messaging Traffic Characteristics", 2013 IEEE 33rd International Conference on Distributed Computing Systems, vol. 00, no. , pp. 51, 2007, doi:10.1109/ICDCS.2007.149
95 ms
(Ver 3.3 (11022016))