The Community for Technology Leaders
2013 IEEE 33rd International Conference on Distributed Computing Systems (2007)
Toronto, Canada
June 25, 2007 to June 27, 2007
ISBN: 0-7695-2837-3
pp: 28
Jian-guang Lou , Microsoft Research Asia, China
Yusuo Hu , Microsoft Research Asia, China
Jiang Li , Microsoft Research Asia, China
Hua Chen , Tsinghua University
ABSTRACT
Learning the underlying model from distributed data is often useful for many distributed systems. In this paper, we study the problem of learning a non-parametric model from distributed observations. We propose a gossip-based distributed kernel density estimation algorithm and analyze the convergence and consistency of the estimation process. Furthermore, we extend our algorithm to distributed systems under communication and storage constraints by introducing a fast and efficient data reduction algorithm. Experiments show that our algorithm can estimate underlying density distribution accurately and robustly with only small communication and storage overhead.
INDEX TERMS
Kernel Density Estimation, Non-parametric Statistics, Distributed Estimation, Data Reduction, Gossip
CITATION
Jian-guang Lou, Yusuo Hu, Jiang Li, Hua Chen, "Distributed Density Estimation Using Non-parametric Statistics", 2013 IEEE 33rd International Conference on Distributed Computing Systems, vol. 00, no. , pp. 28, 2007, doi:10.1109/ICDCS.2007.100
106 ms
(Ver )