The Community for Technology Leaders
2013 IEEE 33rd International Conference on Distributed Computing Systems (2007)
Toronto, Canada
June 25, 2007 to June 27, 2007
ISBN: 0-7695-2837-3
pp: 4
Minos Garofalakis , Yahoo! Research California, USA
Rajeev Rastogi , Bell Labs Bangalore, India
Sumit Ganguly , Indian Inst. of Tech. Kanpur, India
Krishan Sabnani , Bell Labs New Jersey, USA
Effective mechanisms for detecting and thwarting Distributed Denial-of-Service (DDoS) attacks are becoming increasingly important to the success of today?s Internet as a viable commercial and business tool. In this paper, we propose novel data-streaming algorithms for the robust, real-time detection of DDoS activity in large ISP networks. The key element of our solution is a new, hashbased synopsis data structure for network-data streams that allows us to efficiently track, in guaranteed small space and time, destination IP addresses in the underlying network that are "large" with respect to the number of distinct source IP addresses that have established potentially-malicious (e.g., "half-open") connections to them. Our work is the first to address the problem of efficiently tracking the top distinct-source frequencies over a general stream of updates (insertions and deletions) to the set of underlying network flows, thus enabling us to effectively distinguish between DDoS activity and flash crowds. Preliminary experimental results verify the effectiveness of our approach.
Minos Garofalakis, Rajeev Rastogi, Sumit Ganguly, Krishan Sabnani, "Streaming Algorithms for Robust, Real-Time Detection of DDoS Attacks", 2013 IEEE 33rd International Conference on Distributed Computing Systems, vol. 00, no. , pp. 4, 2007, doi:10.1109/ICDCS.2007.142
89 ms
(Ver 3.3 (11022016))