The Community for Technology Leaders
RSS Icon
Subscribe
Columbus, OH
June 6, 2005 to June 10, 2005
ISBN: 0-7695-2328-5
pp: 543-552
Vanish Talwar , HP Labs
Qinyi Wu , Georgia Tech
Calton Pu , Georgia Tech
Wenchang Yan , Georgia Tech
Gueyoung Jung , Georgia Tech
Dejan Milojicic , HP Labs
ABSTRACT
<p>IT today is driven by the trend of increasing scale and complexity. Utility and Grid computing models, PlanetLab, and traditional data centers, are reaching the scale of thousands of computers. Installed software consists of dozens of interdependent applications and services. As the complexity and scale of these systems continues to grow, it becomes increasingly difficult to administer and manage them. At the same time, the service deployment technologies are still based on scripts and configuration files with minimal ability to express dependencies, to document and to verify configurations. This results in hard-to-use and erroneous system configurations. Language- and model-based tools, such as SmartFrog and Radia, are proposed for addressing these deployment challenges, but it is unclear whether they are beneficial over traditional solutions.</p> <p>In this paper, we quantitatively compare manual, script-, language-, and model-based deployment solutions as a function of scale, complexity, and susceptibility to change. We also qualitatively compare them in terms of expressiveness and barrier to first use. We demonstrate that script-based solutions are well matched for large scale deployments, language-based for services of large complexity, and model-based for dynamic changes to the design. Finally, we offer a table summarizing rules of thumb regarding which solution to use in which case, subject to deployment needs.</p>
INDEX TERMS
null
CITATION
Vanish Talwar, Qinyi Wu, Calton Pu, Wenchang Yan, Gueyoung Jung, Dejan Milojicic, "Comparison of Approaches to Service Deployment", ICDCS, 2005, Proceedings. 25th IEEE International Conference on Distributed Computing Systems Workshops, Proceedings. 25th IEEE International Conference on Distributed Computing Systems Workshops 2005, pp. 543-552, doi:10.1109/ICDCS.2005.18
3 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool