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Abstract 
Clusters of high-performance workstations are 

emerging as promising platforms for parallel scientific 
computing. This paper describes an eigenvalue solver 
for symmetric tridiagonal matrices, as implemented 
on a cluster of workstations using two different in- 
terprocess communication packages, PVM and P4. 
The algorithm is based on the split-merge technique, 
which uses Laguerre’s iteration and exploits the sep- 
aration property of rank two splitting in order to 
create subtasks that can be solved independently. 
A performance study that compares the distributed, 
parallel split-merge algorithm to a parallel version 
of the well-known bisection algorithm, over standard 
matrix types, demonstrates the performance advantage 
of the new algorithm and its cluster implementation. 

1 Introduction 
As quantitative analysis becomes increasingly impor- 
tant in the sciences and engineering, the need grows for 
faster and more efficient methods to solve eigenvalue 
problems. Large eigenvalue problems occur in a wide 
variety of applications, including the dynamic analysis 
of large-scale structures such as aircraft and ships, 
prediction of structural responses in solid and soil me- 
chanics, the study of solar convection, modal analysis 
of electronic circuits, and the statistical analysis of 
data. Solving for the eigenvalues of large systems 
is a computationally-intensive task that may need 
to be carried out many times within a particular 
application; reducing its execution time will improve 
the performance of the application. 

Solving large numerical applications has tradition- 
ally been one of the tasks best suited for supercomput- 
ers. Recently, parallel processing, which can greatly 
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decrease the time required to solve many problems, has 
started to dominate the supercomputer industry. One 
trend in supercomputer architectures has been towards 
the use of massively parallel computers (MPCs). 

As an alternative to MPCs, there has recently 
emerged increasing interest in using clusters of work- 
stations for parallel scientific. computing. The rea- 
sons for the popularity of these so-called “distributed 
supercomputers” are several [l]. First, clusters are 
often more economical than either a traditional vector- 
based supercomputers or MPCs. Second, the memory 
capacity of each workstation is typically much greater 
than that of an MPC node, allowing large problem 
instances to be addressed. Third, the 1/0 capacity 
of the system is larger than that of an MPC because 
each workstation has its own disks. Fourth, a cluster 
is more flexible than an MPC: additional computing 
and communication capacity, in the form of new 
workstation models and faster networks, can be easily 
configured into the system. Finally, clusters can be 
used for parallel and distributed computing at  the 
same time that they are used as workstations to meet 
the computing needs of individuals. Such sharing of 
resources (both processors and communication links) 
can also be considered a drawback of clusters, however, 
since it is likely to reduce the performance of a partic- 
ular application. Another disadvantage of clusters is 
that communication latency is often much longer than 
in an MPC, particularly if conventional networking 
technology is employed. Distributed parallel applica- 
tions must accommodate these characteristics. 

In this paper, we report the results of designing a 
distributed, parallel eigenvalue solver to execute effi- 
ciently on a cluster of workstations. Our current efforts 
focus on the special case of finding the eigenvalues for 
symmetric tridiagonal matrices. As one of the most 
fundamental problems of computational mathematics, 
this problem continues to receive considerable atten- 
tion in the literature due to its wide applicability. 
Several parallel and distributed algorithms have been 
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developed to address this problem [2, 3, 4, 5,  61. We 
study the split-merge algorithm, designed originally 
for shared-memory parallel architectures by Li and 
Zeng [7]. This algorithm is inherently parallel and 
takes advantage of a fast iteration technique, namely, 
Laguerre’s method. 

We have previously designed and implemented a 
version of this algorithm for MPCs [8]. Using dynamic 
load balancing and efficient communication routines, 
we demonstrated good speedup of the algorithm when 
implemented on a 64-node nCUBE2 hypercube. In 
the project described herein, the split-merge algorithm 
was redesigned and implemented atop a cluster of 
workstations interconnected through a simple Ethernet 
LAN. The purpose of the project is twofold: First, 
faster methods are sought by which to solve eigenvalue 
problems. Second, efficient solutions are sought to 
the communication and scheduling problems that arise 
when executing numerical scientific applications in 
distributed environments. 

The remainder of the paper is organized as follows. 
In Section 2, a brief overview is given of the mathe- 
matical foundations for this work, and the sequential 
split-merge algorithm is described. Section 3 describes 
our basic approach to parallelizing the split-merge 
algorithm in the earlier MPC study. In Section 4, 
the cluster-based implementations of the algorithm 
are described and compared with the MPC version. 
Evaluations of several aspects of the distributed imple- 
mentation are presented, with emphasis on the effects 
of different load balancing strategies, communication 
overhead, and interference from other user processes. 
Section 5 presents the results of a performance eval- 
uation study of the distributed implementations, in- 
cluding execution times on well-known matrices and 
comparisons with a distributed implementation of the 
bisection algorithm [6]. Section 6 concludes the paper. 

2 Foundat ions 
The problem of finding the eigenvalues of a matrix can 
be stated as follows: Find the values A that satisfy 
the equation: A x  = Ax for a vector x, which is called 
an eigenvector. The values A are eigenvalues. The 
problem can be rewritten as follows: Given a matrix 
A, solve f(z) = det[A-AI] = 0. Symmetric tridiagonal 
(ST) matrices have the form shown in Figure l(a). All 
nonzero entries occur on either the main diagonal, the 
superdiagonal, or the subdiagonal. Furthermore, the 
superdiagonal is identical to the subdiagonal. 

Finding the eigenvalues of symmetric matrices is a 
common problem found in many different fields. A 
procedure commonly used to solve this problem is 

to reduce the original “full” matrix to a tridiagonal 
matrix. This operation is achieved by premultiplying 
the matrix by an orthogonal matrix U and postmul- 
tiplying it by UT. The matrix U is chosen so that 
it introduces 0’s in the original matrix except in the 
main diagonal, the superdiagonal and the subdiagonal. 
The eigenvalues of the original matrix and the reduced 
matrix are identical. Thus, finding the eigenvalues of a 
symmetric tridiagonal matrix is crucial in the process 
of finding the eigenvalues of symmetric matrices. 

a1 P2 

P2 a 2  P3 

P3 a3 
... 

Pn 
Pn a n  

(a) ST matrix A (b) ST matrix A’ 

Figure 1. Matrices in split-merge eigenvalue solver 

The split-merge algorithm relies on the so-called 
separation property [9] in order to find the eigenvalues 
of ST matrices. Given an ST matrix A with nonzero 
subdiagonal elements, this technique uses the matrix 
A’ produced by replacing some Pi with 0, as shown in 
Figure l(b). Let A1 < A2 < ... < An be the eigenvalues 
of A, which are to be found. Assume that it is possible 
to find the eigenvalues of the submatrices A1 and A2. 
Let Ay 5 A; 5 ... 5 A: be the eigenvalues of A1 and 
A2 after they have been found, merged, and sorted in 
increasing order. The separation property states that 
A:-, < Ai < A:+l and that Ai-1 < A: < Ai+1 for all 
values of i. 

In the split-merge algorithm, the separation prop- 
erty is used as follows: the eigenvalues of matrices 
A1 and A2 are found and then used as the initial 
approximations to the eigenvalues of matrix A. The 
process may be applied recursively in a divide-and- 
conquer manner until matrices of sizes 2 x 2  are reached, 
for which eigenvalues may be found easily. Without 
loss of generality, assume that n, the order of the 
matrix, is a power of 2; specifically, let n = 2k. The 
algorithm proceeds in a series of IC stages. In the first 
stage, the eigenvalues for each of the 2 x 2 arrays are 
found using the quadratic formula. Results from pairs 
of neighboring subarrays are merged, sorted, and used 
in solving 4 x 4 arrays in the second stage. The same 
procedure is repeated for the following stages: At stage 
i, eigenvalues are found for 2k-i submatrices of size 2‘, 
using the results of stage i -  1 as initial approximations. 
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In order to find an individual eigenvalue from an 
initial approximation, the split-merge algorithm uses 
Laguerre’s method for finding the zeroes of a polyno- 
mial with real and simple zeros. This method exhibits 
a cubic convergence rate. The split-merge algorithm, 
which is described in detail in [7], operates as shown in 
Figure 2. 

Algorithm 1: Split-Merge 
Input: Symmetric tridiagonal matrix A of order 2k 
Output: The eigenvalues Xi,  i = 1 , .  . . , 2k, of A 
Procedure: 
begin 

Find eigenvalues for the 2k-’ submatrices of A of 
size 2 x 2. 
for i = 2 to k 

for j = 1 to 2k-’ 
Combine submatrices 2 j  - 1 and 2 j  of order 
2i-1 into one matrix of size 2’. (That is, 
merge their eigenvalues to form a list of 
initial approximations for Laguerre’s iteration 
method in the next stage.) 
for I = 1 to 2’ 

Use Laguerre’s iteration to find A t  for the 
jth submatrix of order 2’. 

endfor 
endfor 

endfor 
end 

Figure 2. Split-merge algorithm. 

The algorithm can be viewed as a “tree” of tasks, 
as shown in Figure 3. At the leaves of the tree, the 
eigenvalues for the 2 x 2 submatrices are found. These 
results are merge-sorted in a pairwise fashion, and in 
the next stage, the eigenvalues for the 4 x 4  submatrices 
are found. This process continues until the eigenvalues 
for the original matrix are produced at the root of the 
tree. 

3 Distributing the Workload 
Although the split-merge algorithm can be viewed 
logically as a tree, the nodes in this tree clearly 
should not also represent processors in a parallel and 
distributed implementation. If this were the case, for 
example, a single node would be solely responsible 
for executing the entire last stage of the algorithm, 
severely reducing the parallelism of the algorithm. In 
parallelizing the split-merge algorithm, a key objective 
is to maximize the fraction of time that each processor 

Figure 3. Representation of the split-merge algorithm 

is busy solving for eigenvalues in each of the k stages. 
For purposes of discussion, let us assume that the 
number of processors and the order of the input matrix 
are both a power of two, 2d and 2k, respectively. The 
method also works if these conditions do not hold. 

3.1 Original Implementation 
In our initial approach, the responsibility for solving 
for eigenvalues was divided evenly among processors, 
that is, at  all stages, every processor is responsible for 
finding 2k-d  eigenvalues. In the first k - d stages, no 
communication is necessary between processors, since 
each submatrix is small enough to be handled by a 
single processor. Specifically, each node i initially 
performs the first k - d stages independently, thereby 
solving for the 2 k - d  eigenvalues of the ith (numbering 
from left to right) submatrix of order k - d .  In the 
last d stages, nodes must communicate their results to 
other nodes where those results are merged and sorted; 
the appropriate sets of eigenvalues are returned to each 
node in order to be used as input to the next stage. 
The processing elements (nodes) are divided in two 
categories: sinks and clients. Henceforth, the first k - d 
stages of the algorithm will be referred to as the local 
stages, and the last d stages will be referred to as the 
distributed stages. 

This approach, which was originally implemented 
on a 64-node nCUBE-2 hypercube multicomputer, did 
not perform particularly well. Investigation revealed 
that the time required for processors to finish their 
share of eigenvalues was affected by the relatively high 
variance in the number of iterations needed to find 
eigenvalues. Although the majority of the eigenvalues 
require a single iteration, a significant number require 
more iterations. In the distributed stages of the 

610 

J -- 



algorithm, where communication between processors 
is necessary, this imbalance caused those processors 
that completed their tasks early to remain idle, waiting 
for others to finish. This unexpected phenomenon 
greatly reduced the efficiency of the algorithm, thereby 
limiting speedup. 

3.2 
The previous result led to  a redesign of the algorithm 
in an attempt to achieve better load balancing among 
processors. The load balancing algorithm is centralized 
and receiver-initiated [lo]. The general strategy works 
as follows. Within a given stage, each node is initially 
required to solve only a fraction of the eigenvalues 
that it would have been responsible for in the original 
algorithm. One node (node 0) serves as the coordinator 
and is responsible for managing allocation of the 
remaining eigenvalues to nodes that finish early. When 
a node completes its initial workload, it sends its results 
to the coordinator, which may dispense an additional 
set of initial eigenvalue approximations to that node, 
called a subsequent workload. This process repeats 
until all the eigenvalues have been found for the current 
stage. Node 0 collects the results from the other 
nodes and then sends the respective results back to the 
sinks, which are responsible for merging and sorting the 
eigenvalues solved at  each stage. 

Use of Dynamic Load Balancing 

Figure 4. Trace of load balancing algorithm 

This approach was effective in reducing the load 
imbalance among the nodes cooperating within each 
stage. Figure 4 shows a trace of the execution of the 
modified algorithm on a 2048 x 2048 matrix. Shaded 
areas indicate when processors are busy. In this 
example, the algorithm requires 11 stages. Stages 
1 though 7 execute without interprocessor commu- 
nication and are represented at  the far left of the 
figure. Stages 8 through 11 require cooperation (and 
hence communication) among nodes. The nodes finish 
each stage at  approximately the same time, resulting 
in good efficiency. The speedup of the algorithm is 
sensitive to the sizes of the initial and subsequent 

workloads, however. If the workloads are too small, 
then too much time is spent in communication between 
the clients and the coordinator. In addition, the coor- 
dinator may not be able to service all the outstanding 
messages immediately, delaying those nodes requesting 
additional work. On the other hand, if the workloads 
are too large, then the phenomenon of load imbalance 
appears again. 

4 Cluster Implementation 
In order to study the split-merge algorithm in a dis- 
tributed environment, it was implemented and tested 
on a cluster of Sun Sparc-10, model 30 and model 
40 workstations, interconnected by a typical Ethernet 
network. The workstations used for the experiments 
were also available for general use by students and 
faculty, that is, other users could freely access the work- 
stations at  any time. This environment is consistent 
with our goal of testing the hypothesis that general- 
purpose, shared workstations can provide competitive 
performance for scientific computing tasks. 

The eigenvalue algorithm was implemented using 
two different programming environments, PVM and 
P4. PVM [ll], a public domain package from Oak 
Ridge National Laboratory, provides a software infras- 
tructure for network-based heterogeneous concurrent 
computing. P4 [12], developed at  Argonne National 
Laboratory, comprises a library of macros and sub- 
routines that support monitors for shared-memory 
programming, message-passing primitives, and sup- 
port for heterogeneous cluster computing. Since there 
were no significant differences in performance between 
the PVM and P4 implementations, only the PVM 
implementation is described here. 

4.1 Environmental Differences 
Porting the nCUBE-2 code to  PVM (version 2.4, 
and later version 3.1) on the cluster was relatively 
straightforward. Both environments are based on 
message passing, and their functionality is similar. 
Both environments support programming in C and 
Fortran and allow the exchange of messages between 
program components written in either language. How- 
ever, some redesign of the algorithm was necessary in 
order to accommodate three major differences between 
the two environments: allocation of system resources 
to applications, communication latency, and processor 
speed. 

In the nCUBE-2, full subcubes are allocated to each 
application. One instance of the program runs on 
each node of the subcube, and the hypercube topology 
and the underlying routing algorithm prevent com- 
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munication conflicts among the messages of different 
programs. In PVM, the processes constituting the 
distributed application are allocated to the available 
workstations. The number of process instances can 
be larger than the number of workstations available; 
the benefits of this strategy will be described later. 
Also, executing parallel applications on a cluster of 
general-use workstations introduces randomness in the 
performance of the program from two sources: the load 
of the workstations and the load of the network. 

The communication latencies of the two environ- 
ments are very different. According to traces of 
program executions, the round-trip message latency 
is approximately 400 microseconds on the nCUBE-2, 
compared to 5 milliseconds on the cluster. In addition 
to software overhead, the increased latency results from 
a context switches. 

Finally, the cluster has faster processors than the 
hypercube: the sequential version of the split-merge 
program runs approximately 6 times faster on a 
lightly loaded workstation than on a single node in 
the nCUBE2. While this difference benefits cluster 
applications, it also magnifies the disadvantage of the 
cluster in terms of communication latency. 

4.2 Load Balancing Strategies 
As described in Section 3, the nCUBE2 version of 
the split-merge algorithm used dynamic load balancing 
to accommodate the variance in the Laguerre iter- 
ation routine. In the hypercube environment, load 
balancing was useful only in the distributed stages of 
the algorithm. However, traces of execution on the 
cluster indicated that the problem of load imbalance 
could also appear in the local stages, that is, in 
those stages involving no interprocessor communica- 
tion. This behavior can be attributed to a PVM 
process relinquishing the processor to another user 
application on a particular workstation. When such 
an event occurs, the execution of the entire program is 
delayed until that PVM instance processes finishes its 
(local) share of the work. 

This phenomenon can be observed in Figure 5 ,  
where every process is executing on a different work- 
station. Process 6 was assigned by PVM to a work- 
station occupied by an interactive user. Although the 
distributed stages (9-11) are reasonably well balanced, 
the execution of process 6 on the last local stage (8) 
delays the entire algorithm. This result illustrates that 
in a cluster of workstations load balancing may be 
critical to parts of the application where the workload 
was evenly distributed in an MPC implementation. 
In order to alleviate this problem in the split-merge 

algorithm, load balancing was also applied to the last 
several local stages. If all workstations have the same 
level of processor utilization, then there is no advantage 
in using load balancing in the local stages, as it intro- 
duces additional communication costs. However, if the 
load on the workstations is uneven, or the capacities 
of the workstations are uneven, then load balancing in 
the local stages reduces the overall execution time. 
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4.3 Masking Communication Costs 
An approach that proved effective in masking the cost 
of communications on the cluster was to create more 
worker processes than there are workstations, which is 
possible because PVM can map several processes to the 
same processor. This approach reduced the negative 
effect of processes becoming blocked while waiting for 
communication to complete. 

In the PVM implementation, this approach proved 
even more successful than load balancing in local 
stages, when all workstations in the cluster have a low 
level of utilization, as can be observed in Figure 6. 
Figures 6(a) and 6(b), respectively, plot the execution 
times and corresponding speedups when two processes 
were created and assigned to each workstation. These 
two strategies are useful for different problems. Load 
balancing in the early stages helps when a subset of 
the workstations has a higher level of utilization than 
the rest of the workstations in the cluster. Doubling 
the number of processes in each workstation helps to 
mask the cost of communications. 

4.4 Comparison with the Hypercube 

Although the communication costs are substantially 
higher on the cluster environment, the greater com- 
puting power of the processors results in good perfor- 
mance. Since the split-merge algorithm is not particu- 
larly communication-intensive, it benefits substantially 
from this characteristic of the cluster. Therefore, 
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Figure 6. Comparison of load balancing approaches for a matrix or order 4096 

when comparing cluster performance with that of the 
nCUBE2, it is necessary to examine the absolute 
execution times and to consider the cost and flexibility 
of the systems. 

As an example, Figure 7 plots the measured execu- 
tion time of the distributed algorithm on a particular 
problem instance of size 2048, as executed on an 
nCUBE2 and a lightly loaded cluster. Finding all the 
eigenvalues of the matrix required 127 seconds on a 8- 
node cube, 60 seconds on a 16-node cube, 31 seconds 
on a 32-node cube, and 16 seconds on a 64-node cube. 
On the cluster, the same problem required 77 seconds 
on one node, 21 seconds on 4 nodes, and 15 seconds 
on 8 nodes. The cluster times with 4 and 8 processors 
are competitive with the times of the nCUBE2 with 
32 and 64 processors, respectively. 

In light of these results, and taking into consider- 
ation the cost factor (given university discounts on 
equipment, 16 Sparc-10s cost approximately the same 
as 16-node nCUBE2), it can be argued that clusters 
of workstations provide a cost/effective alternative 
to MPCs for certain scientific applications, once the 
higher communication costs are accounted for. In this 
case, the use of two processes per node was effective in 
hiding communication latency. Improving performance 
by reducing broadcast times and using faster LANs is 
part of our ongoing research. 
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Figure 7. Execution time comparison of nCUBE-2 and 
cluster of workstations 

5 Performance Study 
The preceding discussion was based on experiments 
performed using random matrices. To verify the 
robustness of the distributed, parallel split-merge algo- 
rithm, several other types of input matrices, designed 
specifically to test the accuracy arrd speed of eigenvalue 
solvers, were used. 
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Figure 8. Execution times of cluster eigenvalue solvers for Type 1 and 2 matrices. 

A comparison of the sequential version of the split- 
merge algorithm with other sequential algorithms for 
finding eigenvalues was conducted previously by Li 
and Zeng [7]. In that study, the other sequential al- 
gorithms included bisection/multisection(DSTEBZ in 
LAPACK), divide-and-conquer (TREEQL [4]), RFQR 
(Root-free QR, DSTERF from LAPACK) and QR 
(DSTEQR from LAPACK). Split-and-merge achieved 
the best accuracy, while RFQR was the fastest sequen- 
tial algorithm. 

In our study, the parallel version of split-merge 
was compared against a parallel version of the well- 
known method of bisection [9]. Several parallel versions 
of the bisection method have been developed to find 
eigenvalues of symmetric tridiagonal matrices. The 
one that was used for the comparison is geared towards 
maximum parallelism. First, the interval containing all 
the eigenvalues of the matrix is calculated. Once this 
interval has been calculated, the number maximum of 
iterations required to obtain an eigenvalue with the 
desired accuracy is calculated. Without describing 
the details here, every eigenvalue can be obtained 
independently from the others, so that the algorithm 
can be parallelized by distributing the eigenvalues 
among the available processors. Thus, bisection is very 
well suited for parallelization: once the initial data 
has been broadcast to the participating nodes, each 
node can work on its part of the problem without any 
communication with other nodes, except for reporting 
the final results to the initiating node. QR methods 
are difficult to parallelize when only the eigenvalues 

are sought [3]. Ipsen and Jessup [6] report that parallel 
bisection is faster than divide-and-conquer, hence the 
decision to use bisection in comparisons reported here. 

Twelve standard types of input matrices were used 
in the experiments and are described in the technical 
report [13]. The results for matrices type 1 and 2 are 
discussed here. The following conventions are used 
in the description of the matrices: ai, i = 1, ..., n 
represent the (main) diagonal entries and pi, i = 
1, ..., n - 1 denote the offdiagonal entries. For matrices 
of type 1 (Toeplitz matrices), ai = a and pi = b, for 
all i. Matrices of type 2 have a1 = a - b ,  ai = a,  
for i = 2 , .  . . , n  - 1, a, = a + b, and /3, = b, for 
j = 1 , .  . . , n - 1. The values of a and b were chosen 
to be 4 and 1, respectively, for all the matrices. The 
experiments were performed on matrices of size 128, 
256, 512, 1024 and 2048 for types 1 through 7, size 
128, 256 and 512 for types 8 through 12. Clusters of 1, 
2, 4 and 8 workstations were used. 

Figure 8 shows the execution times for matrix types 
1 and 2 with 2048 entries. The results for types 3 
through 12 are similar to those in Figure 8, and are 
omitted here for the sake of brevity; those results 
are available in [13]. The sequential version of the 
split-merge algorithm is significantly faster than the 
sequential version of bisection. In examining absolute 
execution times of the parallel algorithm, for matrices 
with 2048 entries, the execution times of the parallel 
version of split-merge on a cluster with 4 nodes are 
similar to the execution times of split-merge on a 32- 
node nCUBE2, confirming the observations made pre- 
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viously for random matrices that the implementations 
on small clusters are competitive with those on a much 
larger nCUBE-2. Specifically, for both the bisection 
and the split-merge algorithms, a very small cluster 
of workstations represents a viable alternative to an 
nCUBE-2 with 32 nodes. 

The experiments were generally conducted at  times 
of little activity on the workstations, but as the 
workstations are in an open laboratory, it was not 
possible to guarantee exclusive access to the systems. 
It should also be noted that faster networks and 
better interfaces between the workstation and the 
networks are becoming available and they will reduce 
the communication overhead of the clusters. As 
communications latencies decrease, the advantage of 
split-merge will likely increase. 

6 Conclusions and Future 
Work 

The split-merge algorithm is a new, highly paral- 
lelizable method for finding eigenvalues. This paper 
described its first distributed parallel implementation 
on a workstation cluster. The work described in this 
paper differs from previous contributions in parallel 
eigensolvers by focusing on how to accommodate and 
exploit particular features of a distributed environment 
in order to maximize the performance. Specifically, we 
evaluated the effects on performance of dynamic load 
balancing and the use of multiple processes per node. 
The resulting implementations demonstrated perfor- 
mance that compares very well with other parallel and 
distributed methods. 

Our continuing research on highly-parallel eigen- 
value solvers and distributed parallel computing com- 
prises several tasks. For larger clusters of workstations, 
it will be necessary to reduce communication costs, 
particularly the cost of broadcast. This will be 
accomplished on a regular Ethernet by incorporating 
IP multicast [14] into PVM. In the near future, the 
Ethernet in the cluster will be replaced with an 
ATM LAN that supports broadcast communication 
in hardware. Other environments and platforms will 
also be used to study the performance under different 
conditions. 
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