
Design and Performance Evaluation of a Distributed
Eigenvalue Solver on a Workstation Cluster*

C. Trefltz, C.C. Huang, P.K. McKinley
Department of Computer Science

T.Y. Li, Z. Zeng
Department of Mathematics

Michigan State University
East Lansing, Michigan 48824

Abstract
Clusters of high-performance workstations are

emerging as promising platforms for parallel scientific
computing. This paper describes an eigenvalue solver
for symmetric tridiagonal matrices, as implemented
on a cluster of workstations using two different in-
terprocess communication packages, PVM and P4.
The algorithm is based on the split-merge technique,
which uses Laguerre’s iteration and exploits the sep-
aration property of rank two splitting in order to
create subtasks that can be solved independently.
A performance study that compares the distributed,
parallel split-merge algorithm to a parallel version
of the well-known bisection algorithm, over standard
matrix types, demonstrates the performance advantage
of the new algorithm and its cluster implementation.

1 Introduction
As quantitative analysis becomes increasingly impor-
tant in the sciences and engineering, the need grows for
faster and more efficient methods to solve eigenvalue
problems. Large eigenvalue problems occur in a wide
variety of applications, including the dynamic analysis
of large-scale structures such as aircraft and ships,
prediction of structural responses in solid and soil me-
chanics, the study of solar convection, modal analysis
of electronic circuits, and the statistical analysis of
data. Solving for the eigenvalues of large systems
is a computationally-intensive task that may need
to be carried out many times within a particular
application; reducing its execution time will improve
the performance of the application.

Solving large numerical applications has tradition-
ally been one of the tasks best suited for supercomput-
ers. Recently, parallel processing, which can greatly

‘This work was supported in part by DOE grant DEFGO2-

9121641, and CDA-9222901, and by an Ameritech Faculty
Fellowship.

93ER25167, by NSF grants MIP-9204066, CCR-9024840, CDA-

Michigan State University
East Lansing, Michigan 48824

decrease the time required to solve many problems, has
started to dominate the supercomputer industry. One
trend in supercomputer architectures has been towards
the use of massively parallel computers (MPCs).

As an alternative to MPCs, there has recently
emerged increasing interest in using clusters of work-
stations for parallel scientific. computing. The rea-
sons for the popularity of these so-called “distributed
supercomputers” are several [l]. First, clusters are
often more economical than either a traditional vector-
based supercomputers or MPCs. Second, the memory
capacity of each workstation is typically much greater
than that of an MPC node, allowing large problem
instances to be addressed. Third, the 1/0 capacity
of the system is larger than that of an MPC because
each workstation has its own disks. Fourth, a cluster
is more flexible than an MPC: additional computing
and communication capacity, in the form of new
workstation models and faster networks, can be easily
configured into the system. Finally, clusters can be
used for parallel and distributed computing at the
same time that they are used as workstations to meet
the computing needs of individuals. Such sharing of
resources (both processors and communication links)
can also be considered a drawback of clusters, however,
since it is likely to reduce the performance of a partic-
ular application. Another disadvantage of clusters is
that communication latency is often much longer than
in an MPC, particularly if conventional networking
technology is employed. Distributed parallel applica-
tions must accommodate these characteristics.

In this paper, we report the results of designing a
distributed, parallel eigenvalue solver to execute effi-
ciently on a cluster of workstations. Our current efforts
focus on the special case of finding the eigenvalues for
symmetric tridiagonal matrices. As one of the most
fundamental problems of computational mathematics,
this problem continues to receive considerable atten-
tion in the literature due to its wide applicability.
Several parallel and distributed algorithms have been

608
1063-6927194 $03.00 0 1994 IEEE

~- I ~ ~~~ ~___

developed to address this problem [2, 3, 4, 5, 61. We
study the split-merge algorithm, designed originally
for shared-memory parallel architectures by Li and
Zeng [7]. This algorithm is inherently parallel and
takes advantage of a fast iteration technique, namely,
Laguerre’s method.

We have previously designed and implemented a
version of this algorithm for MPCs [8]. Using dynamic
load balancing and efficient communication routines,
we demonstrated good speedup of the algorithm when
implemented on a 64-node nCUBE2 hypercube. In
the project described herein, the split-merge algorithm
was redesigned and implemented atop a cluster of
workstations interconnected through a simple Ethernet
LAN. The purpose of the project is twofold: First,
faster methods are sought by which to solve eigenvalue
problems. Second, efficient solutions are sought to
the communication and scheduling problems that arise
when executing numerical scientific applications in
distributed environments.

The remainder of the paper is organized as follows.
In Section 2, a brief overview is given of the mathe-
matical foundations for this work, and the sequential
split-merge algorithm is described. Section 3 describes
our basic approach to parallelizing the split-merge
algorithm in the earlier MPC study. In Section 4,
the cluster-based implementations of the algorithm
are described and compared with the MPC version.
Evaluations of several aspects of the distributed imple-
mentation are presented, with emphasis on the effects
of different load balancing strategies, communication
overhead, and interference from other user processes.
Section 5 presents the results of a performance eval-
uation study of the distributed implementations, in-
cluding execution times on well-known matrices and
comparisons with a distributed implementation of the
bisection algorithm [6]. Section 6 concludes the paper.

2 Foundat ions
The problem of finding the eigenvalues of a matrix can
be stated as follows: Find the values A that satisfy
the equation: A x = Ax for a vector x, which is called
an eigenvector. The values A are eigenvalues. The
problem can be rewritten as follows: Given a matrix
A, solve f(z) = det[A-AI] = 0. Symmetric tridiagonal
(ST) matrices have the form shown in Figure l(a). All
nonzero entries occur on either the main diagonal, the
superdiagonal, or the subdiagonal. Furthermore, the
superdiagonal is identical to the subdiagonal.

Finding the eigenvalues of symmetric matrices is a
common problem found in many different fields. A
procedure commonly used to solve this problem is

to reduce the original “full” matrix to a tridiagonal
matrix. This operation is achieved by premultiplying
the matrix by an orthogonal matrix U and postmul-
tiplying it by UT. The matrix U is chosen so that
it introduces 0’s in the original matrix except in the
main diagonal, the superdiagonal and the subdiagonal.
The eigenvalues of the original matrix and the reduced
matrix are identical. Thus, finding the eigenvalues of a
symmetric tridiagonal matrix is crucial in the process
of finding the eigenvalues of symmetric matrices.

a1 P2

P2 a 2 P3

P3 a3
...

Pn
Pn a n

(a) ST matrix A (b) ST matrix A’

Figure 1. Matrices in split-merge eigenvalue solver

The split-merge algorithm relies on the so-called
separation property [9] in order to find the eigenvalues
of ST matrices. Given an ST matrix A with nonzero
subdiagonal elements, this technique uses the matrix
A’ produced by replacing some Pi with 0, as shown in
Figure l(b). Let A1 < A2 < ... < An be the eigenvalues
of A, which are to be found. Assume that it is possible
to find the eigenvalues of the submatrices A1 and A2.
Let Ay 5 A; 5 ... 5 A: be the eigenvalues of A1 and
A2 after they have been found, merged, and sorted in
increasing order. The separation property states that
A:-, < Ai < A:+l and that Ai-1 < A: < Ai+1 for all
values of i.

In the split-merge algorithm, the separation prop-
erty is used as follows: the eigenvalues of matrices
A1 and A2 are found and then used as the initial
approximations to the eigenvalues of matrix A. The
process may be applied recursively in a divide-and-
conquer manner until matrices of sizes 2 x 2 are reached,
for which eigenvalues may be found easily. Without
loss of generality, assume that n, the order of the
matrix, is a power of 2; specifically, let n = 2k. The
algorithm proceeds in a series of IC stages. In the first
stage, the eigenvalues for each of the 2 x 2 arrays are
found using the quadratic formula. Results from pairs
of neighboring subarrays are merged, sorted, and used
in solving 4 x 4 arrays in the second stage. The same
procedure is repeated for the following stages: At stage
i, eigenvalues are found for 2k-i submatrices of size 2‘,
using the results of stage i - 1 as initial approximations.

609

-

In order to find an individual eigenvalue from an
initial approximation, the split-merge algorithm uses
Laguerre’s method for finding the zeroes of a polyno-
mial with real and simple zeros. This method exhibits
a cubic convergence rate. The split-merge algorithm,
which is described in detail in [7], operates as shown in
Figure 2.

Algorithm 1: Split-Merge
Input: Symmetric tridiagonal matrix A of order 2k
Output: The eigenvalues Xi, i = 1 , . . . , 2k, of A
Procedure:
begin

Find eigenvalues for the 2k-’ submatrices of A of
size 2 x 2.
for i = 2 to k

for j = 1 to 2k-’
Combine submatrices 2 j - 1 and 2 j of order
2i-1 into one matrix of size 2’. (That is,
merge their eigenvalues to form a list of
initial approximations for Laguerre’s iteration
method in the next stage.)
for I = 1 to 2’

Use Laguerre’s iteration to find A t for the
jth submatrix of order 2’.

endfor
endfor

endfor
end

Figure 2. Split-merge algorithm.

The algorithm can be viewed as a “tree” of tasks,
as shown in Figure 3. At the leaves of the tree, the
eigenvalues for the 2 x 2 submatrices are found. These
results are merge-sorted in a pairwise fashion, and in
the next stage, the eigenvalues for the 4 x 4 submatrices
are found. This process continues until the eigenvalues
for the original matrix are produced at the root of the
tree.

3 Distributing the Workload
Although the split-merge algorithm can be viewed
logically as a tree, the nodes in this tree clearly
should not also represent processors in a parallel and
distributed implementation. If this were the case, for
example, a single node would be solely responsible
for executing the entire last stage of the algorithm,
severely reducing the parallelism of the algorithm. In
parallelizing the split-merge algorithm, a key objective
is to maximize the fraction of time that each processor

Figure 3. Representation of the split-merge algorithm

is busy solving for eigenvalues in each of the k stages.
For purposes of discussion, let us assume that the
number of processors and the order of the input matrix
are both a power of two, 2d and 2k, respectively. The
method also works if these conditions do not hold.

3.1 Original Implementation
In our initial approach, the responsibility for solving
for eigenvalues was divided evenly among processors,
that is, at all stages, every processor is responsible for
finding 2k-d eigenvalues. In the first k - d stages, no
communication is necessary between processors, since
each submatrix is small enough to be handled by a
single processor. Specifically, each node i initially
performs the first k - d stages independently, thereby
solving for the 2 k - d eigenvalues of the ith (numbering
from left to right) submatrix of order k - d . In the
last d stages, nodes must communicate their results to
other nodes where those results are merged and sorted;
the appropriate sets of eigenvalues are returned to each
node in order to be used as input to the next stage.
The processing elements (nodes) are divided in two
categories: sinks and clients. Henceforth, the first k - d
stages of the algorithm will be referred to as the local
stages, and the last d stages will be referred to as the
distributed stages.

This approach, which was originally implemented
on a 64-node nCUBE-2 hypercube multicomputer, did
not perform particularly well. Investigation revealed
that the time required for processors to finish their
share of eigenvalues was affected by the relatively high
variance in the number of iterations needed to find
eigenvalues. Although the majority of the eigenvalues
require a single iteration, a significant number require
more iterations. In the distributed stages of the

610

J --

algorithm, where communication between processors
is necessary, this imbalance caused those processors
that completed their tasks early to remain idle, waiting
for others to finish. This unexpected phenomenon
greatly reduced the efficiency of the algorithm, thereby
limiting speedup.

3.2
The previous result led to a redesign of the algorithm
in an attempt to achieve better load balancing among
processors. The load balancing algorithm is centralized
and receiver-initiated [lo]. The general strategy works
as follows. Within a given stage, each node is initially
required to solve only a fraction of the eigenvalues
that it would have been responsible for in the original
algorithm. One node (node 0) serves as the coordinator
and is responsible for managing allocation of the
remaining eigenvalues to nodes that finish early. When
a node completes its initial workload, it sends its results
to the coordinator, which may dispense an additional
set of initial eigenvalue approximations to that node,
called a subsequent workload. This process repeats
until all the eigenvalues have been found for the current
stage. Node 0 collects the results from the other
nodes and then sends the respective results back to the
sinks, which are responsible for merging and sorting the
eigenvalues solved at each stage.

Use of Dynamic Load Balancing

Figure 4. Trace of load balancing algorithm

This approach was effective in reducing the load
imbalance among the nodes cooperating within each
stage. Figure 4 shows a trace of the execution of the
modified algorithm on a 2048 x 2048 matrix. Shaded
areas indicate when processors are busy. In this
example, the algorithm requires 11 stages. Stages
1 though 7 execute without interprocessor commu-
nication and are represented at the far left of the
figure. Stages 8 through 11 require cooperation (and
hence communication) among nodes. The nodes finish
each stage at approximately the same time, resulting
in good efficiency. The speedup of the algorithm is
sensitive to the sizes of the initial and subsequent

workloads, however. If the workloads are too small,
then too much time is spent in communication between
the clients and the coordinator. In addition, the coor-
dinator may not be able to service all the outstanding
messages immediately, delaying those nodes requesting
additional work. On the other hand, if the workloads
are too large, then the phenomenon of load imbalance
appears again.

4 Cluster Implementation
In order to study the split-merge algorithm in a dis-
tributed environment, it was implemented and tested
on a cluster of Sun Sparc-10, model 30 and model
40 workstations, interconnected by a typical Ethernet
network. The workstations used for the experiments
were also available for general use by students and
faculty, that is, other users could freely access the work-
stations at any time. This environment is consistent
with our goal of testing the hypothesis that general-
purpose, shared workstations can provide competitive
performance for scientific computing tasks.

The eigenvalue algorithm was implemented using
two different programming environments, PVM and
P4. PVM [ll], a public domain package from Oak
Ridge National Laboratory, provides a software infras-
tructure for network-based heterogeneous concurrent
computing. P4 [12], developed at Argonne National
Laboratory, comprises a library of macros and sub-
routines that support monitors for shared-memory
programming, message-passing primitives, and sup-
port for heterogeneous cluster computing. Since there
were no significant differences in performance between
the PVM and P4 implementations, only the PVM
implementation is described here.

4.1 Environmental Differences
Porting the nCUBE-2 code to PVM (version 2.4,
and later version 3.1) on the cluster was relatively
straightforward. Both environments are based on
message passing, and their functionality is similar.
Both environments support programming in C and
Fortran and allow the exchange of messages between
program components written in either language. How-
ever, some redesign of the algorithm was necessary in
order to accommodate three major differences between
the two environments: allocation of system resources
to applications, communication latency, and processor
speed.

In the nCUBE-2, full subcubes are allocated to each
application. One instance of the program runs on
each node of the subcube, and the hypercube topology
and the underlying routing algorithm prevent com-

611

munication conflicts among the messages of different
programs. In PVM, the processes constituting the
distributed application are allocated to the available
workstations. The number of process instances can
be larger than the number of workstations available;
the benefits of this strategy will be described later.
Also, executing parallel applications on a cluster of
general-use workstations introduces randomness in the
performance of the program from two sources: the load
of the workstations and the load of the network.

The communication latencies of the two environ-
ments are very different. According to traces of
program executions, the round-trip message latency
is approximately 400 microseconds on the nCUBE-2,
compared to 5 milliseconds on the cluster. In addition
to software overhead, the increased latency results from
a context switches.

Finally, the cluster has faster processors than the
hypercube: the sequential version of the split-merge
program runs approximately 6 times faster on a
lightly loaded workstation than on a single node in
the nCUBE2. While this difference benefits cluster
applications, it also magnifies the disadvantage of the
cluster in terms of communication latency.

4.2 Load Balancing Strategies
As described in Section 3, the nCUBE2 version of
the split-merge algorithm used dynamic load balancing
to accommodate the variance in the Laguerre iter-
ation routine. In the hypercube environment, load
balancing was useful only in the distributed stages of
the algorithm. However, traces of execution on the
cluster indicated that the problem of load imbalance
could also appear in the local stages, that is, in
those stages involving no interprocessor communica-
tion. This behavior can be attributed to a PVM
process relinquishing the processor to another user
application on a particular workstation. When such
an event occurs, the execution of the entire program is
delayed until that PVM instance processes finishes its
(local) share of the work.

This phenomenon can be observed in Figure 5 ,
where every process is executing on a different work-
station. Process 6 was assigned by PVM to a work-
station occupied by an interactive user. Although the
distributed stages (9-11) are reasonably well balanced,
the execution of process 6 on the last local stage (8)
delays the entire algorithm. This result illustrates that
in a cluster of workstations load balancing may be
critical to parts of the application where the workload
was evenly distributed in an MPC implementation.
In order to alleviate this problem in the split-merge

algorithm, load balancing was also applied to the last
several local stages. If all workstations have the same
level of processor utilization, then there is no advantage
in using load balancing in the local stages, as it intro-
duces additional communication costs. However, if the
load on the workstations is uneven, or the capacities
of the workstations are uneven, then load balancing in
the local stages reduces the overall execution time.

7

e

I

.
R
0
C
I e

0 R

a Y
Y

2 I(
W C

I I

a

-+ = q = y I+-- m y y 9-
Figure 5. Example of load imbalance

4.3 Masking Communication Costs
An approach that proved effective in masking the cost
of communications on the cluster was to create more
worker processes than there are workstations, which is
possible because PVM can map several processes to the
same processor. This approach reduced the negative
effect of processes becoming blocked while waiting for
communication to complete.

In the PVM implementation, this approach proved
even more successful than load balancing in local
stages, when all workstations in the cluster have a low
level of utilization, as can be observed in Figure 6.
Figures 6(a) and 6(b), respectively, plot the execution
times and corresponding speedups when two processes
were created and assigned to each workstation. These
two strategies are useful for different problems. Load
balancing in the early stages helps when a subset of
the workstations has a higher level of utilization than
the rest of the workstations in the cluster. Doubling
the number of processes in each workstation helps to
mask the cost of communications.

4.4 Comparison with the Hypercube

Although the communication costs are substantially
higher on the cluster environment, the greater com-
puting power of the processors results in good perfor-
mance. Since the split-merge algorithm is not particu-
larly communication-intensive, it benefits substantially
from this characteristic of the cluster. Therefore,

Performance

612

-1- --

T

7 200
Double processes 8-

150
Execution 5

Speedup

3

Time
(sec) 100

50

1

0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Number of Processors Number of Processors

(a) execution times (b) speedups

Figure 6. Comparison of load balancing approaches for a matrix or order 4096

when comparing cluster performance with that of the
nCUBE2, it is necessary to examine the absolute
execution times and to consider the cost and flexibility
of the systems.

As an example, Figure 7 plots the measured execu-
tion time of the distributed algorithm on a particular
problem instance of size 2048, as executed on an
nCUBE2 and a lightly loaded cluster. Finding all the
eigenvalues of the matrix required 127 seconds on a 8-
node cube, 60 seconds on a 16-node cube, 31 seconds
on a 32-node cube, and 16 seconds on a 64-node cube.
On the cluster, the same problem required 77 seconds
on one node, 21 seconds on 4 nodes, and 15 seconds
on 8 nodes. The cluster times with 4 and 8 processors
are competitive with the times of the nCUBE2 with
32 and 64 processors, respectively.

In light of these results, and taking into consider-
ation the cost factor (given university discounts on
equipment, 16 Sparc-10s cost approximately the same
as 16-node nCUBE2), it can be argued that clusters
of workstations provide a cost/effective alternative
to MPCs for certain scientific applications, once the
higher communication costs are accounted for. In this
case, the use of two processes per node was effective in
hiding communication latency. Improving performance
by reducing broadcast times and using faster LANs is
part of our ongoing research.

90
Exec.
Time
(secs)

45

I I I I I

nCUBE2 t
Cluster -R-

-

0 ' I I 1
1 1

0 10 20 30 40 50 60
Number of Processors

Figure 7. Execution time comparison of nCUBE-2 and
cluster of workstations

5 Performance Study
The preceding discussion was based on experiments
performed using random matrices. To verify the
robustness of the distributed, parallel split-merge algo-
rithm, several other types of input matrices, designed
specifically to test the accuracy arrd speed of eigenvalue
solvers, were used.

240

Exec.
Time
(secs.)

120

0

1 I I I I I I I

Bisection +-
Split-merge -+

-

-

I I I I I I I I

240

Exec.
Time
(secs.)

120

0

I " ' " ' " Bisection +-
Split-merge -+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Number of PES Number of PES

(a) Matrix with 2048 entries of type 1. (b) Matrix with 2048 entries of type 2.

Figure 8. Execution times of cluster eigenvalue solvers for Type 1 and 2 matrices.

A comparison of the sequential version of the split-
merge algorithm with other sequential algorithms for
finding eigenvalues was conducted previously by Li
and Zeng [7]. In that study, the other sequential al-
gorithms included bisection/multisection(DSTEBZ in
LAPACK), divide-and-conquer (TREEQL [4]), RFQR
(Root-free QR, DSTERF from LAPACK) and QR
(DSTEQR from LAPACK). Split-and-merge achieved
the best accuracy, while RFQR was the fastest sequen-
tial algorithm.

In our study, the parallel version of split-merge
was compared against a parallel version of the well-
known method of bisection [9]. Several parallel versions
of the bisection method have been developed to find
eigenvalues of symmetric tridiagonal matrices. The
one that was used for the comparison is geared towards
maximum parallelism. First, the interval containing all
the eigenvalues of the matrix is calculated. Once this
interval has been calculated, the number maximum of
iterations required to obtain an eigenvalue with the
desired accuracy is calculated. Without describing
the details here, every eigenvalue can be obtained
independently from the others, so that the algorithm
can be parallelized by distributing the eigenvalues
among the available processors. Thus, bisection is very
well suited for parallelization: once the initial data
has been broadcast to the participating nodes, each
node can work on its part of the problem without any
communication with other nodes, except for reporting
the final results to the initiating node. QR methods
are difficult to parallelize when only the eigenvalues

are sought [3]. Ipsen and Jessup [6] report that parallel
bisection is faster than divide-and-conquer, hence the
decision to use bisection in comparisons reported here.

Twelve standard types of input matrices were used
in the experiments and are described in the technical
report [13]. The results for matrices type 1 and 2 are
discussed here. The following conventions are used
in the description of the matrices: ai, i = 1, ..., n
represent the (main) diagonal entries and pi, i =
1, ..., n - 1 denote the offdiagonal entries. For matrices
of type 1 (Toeplitz matrices), ai = a and pi = b, for
all i. Matrices of type 2 have a1 = a - b , ai = a,
for i = 2 , . . . , n - 1, a, = a + b, and /3, = b, for
j = 1 , . . . , n - 1. The values of a and b were chosen
to be 4 and 1, respectively, for all the matrices. The
experiments were performed on matrices of size 128,
256, 512, 1024 and 2048 for types 1 through 7, size
128, 256 and 512 for types 8 through 12. Clusters of 1,
2, 4 and 8 workstations were used.

Figure 8 shows the execution times for matrix types
1 and 2 with 2048 entries. The results for types 3
through 12 are similar to those in Figure 8, and are
omitted here for the sake of brevity; those results
are available in [13]. The sequential version of the
split-merge algorithm is significantly faster than the
sequential version of bisection. In examining absolute
execution times of the parallel algorithm, for matrices
with 2048 entries, the execution times of the parallel
version of split-merge on a cluster with 4 nodes are
similar to the execution times of split-merge on a 32-
node nCUBE2, confirming the observations made pre-

6 14

viously for random matrices that the implementations
on small clusters are competitive with those on a much
larger nCUBE-2. Specifically, for both the bisection
and the split-merge algorithms, a very small cluster
of workstations represents a viable alternative to an
nCUBE-2 with 32 nodes.

The experiments were generally conducted at times
of little activity on the workstations, but as the
workstations are in an open laboratory, it was not
possible to guarantee exclusive access to the systems.
It should also be noted that faster networks and
better interfaces between the workstation and the
networks are becoming available and they will reduce
the communication overhead of the clusters. As
communications latencies decrease, the advantage of
split-merge will likely increase.

6 Conclusions and Future
Work

The split-merge algorithm is a new, highly paral-
lelizable method for finding eigenvalues. This paper
described its first distributed parallel implementation
on a workstation cluster. The work described in this
paper differs from previous contributions in parallel
eigensolvers by focusing on how to accommodate and
exploit particular features of a distributed environment
in order to maximize the performance. Specifically, we
evaluated the effects on performance of dynamic load
balancing and the use of multiple processes per node.
The resulting implementations demonstrated perfor-
mance that compares very well with other parallel and
distributed methods.

Our continuing research on highly-parallel eigen-
value solvers and distributed parallel computing com-
prises several tasks. For larger clusters of workstations,
it will be necessary to reduce communication costs,
particularly the cost of broadcast. This will be
accomplished on a regular Ethernet by incorporating
IP multicast [14] into PVM. In the near future, the
Ethernet in the cluster will be replaced with an
ATM LAN that supports broadcast communication
in hardware. Other environments and platforms will
also be used to study the performance under different
conditions.

References
1. H. T. Kung, R. Sansom, S. Schlick, P. Steenkiste,

M. Arnould, F. Bitz, F. Christianson, E. Cooper,
0. Menzilcioglu, D. Ombres, and B. Zill, “Network-
based multicomputers: An emerging parallel architec-

ture,” in Proceedings of Supercomputing ’91, pp. 664-
673, 1991.

2. T.-Y. Li, H. Zhang, and X.-H. Sun, “Parallel homotopy
algorithm for the symmetric tridiagonal eigenvalue
problem,” SIAM Journal of Scientific and Statistical
Computing, vol. 12, pp. 469-487, May 1991.

3. P. Arbenz, K. Gates, and C. Sprenger, “A parallel
implementation of the symmetric tridiagonal QR al-
gorithm,” in Proceedings of the Fourth Symposium on
the Frontiers of Massively Paralllel Computation, IEEE
CS Press, 1992.

4. J. J. Dongarra and D. C. Sorensen, “A fully parallel al-
gorithm for the symmetric eigenvalue problem,” SIAM
Journal of Scientific and Statistical Computing, vol. 2,
pp. 139-154, March 1987.

5. S. S. Lo, B. Philippe, and A. Sameh, “A multiprocessor
algorithm for the symmetric tridiagonal eigenvalue
problem,” SIA M Journal of Scientific and Statistical
Computing, vol. 2, pp. 155-165, March 1987.

6. I. C. F. Ipsen and E. R. Jessup, “Solving the symmetric
tridiagonal eigenvalue problem on the hypercube,’’
SIAM Journal of Scientific and Statistical Computing,
vol. 11, pp. 203-229, March 1990.

7. T. Y. Li and Z. Zeng, “Laguerre’s iteration in solving
the symmetric tridiagonal eigenproblem - revisited,”
SIAM Journal of Scientific Computing, 1993. accepted
to appear.

8. C. Trefftz, P. K. McKinley, T. Y. Li, and Z. Zeng,
“A scalable eigenvalue solver for symmetric tridiagonal
matrices,” in Proceedings of the sizth SIAM conference
on Parallel Processing, pp. 602-609, 1993.

9. G. H. Golub and C. F. Van Loan, Matriz Computa-
tions. Johns Hopkins University Press, 2nd. edition ed.,
1990.

10. N. G. Shivaratri, P. Krueger, and M. Singhal, “Load
distributing for locally distributed systems,” IEEE
Computer, vol. 25, pp. 3 3 4 4 , December 1992.

11. V. Sunderam, “PVM: A framework for parallel dis-
tributed computing,” Concurrency: Practice and Ez-
perience, vol. 2, December 1990.

12. J . Boyle, R. Butler, T. Disz, B. Glickfield, E. Lusk,
and R. Overbeek, Portable Programs for Parallel Pro-
cessors. Holt, Rinehart and Winston, 1987.

13. C. Trefftz, P. K. McKinley, T. Y. Li, and Z. Zeng,
“A scalable eigenvalue solver for symmetric tridiagonal
matrices,” Tech. Rep. MSU-CPS-ACS-69, Michigan
State University, 1992.

14. S. E. Deering and D. R. Cheriton, “Multicast routing
in datagram internetwork and extended LANs,” ACM
Transactions on Computer Systems, vol. 8, pp. 85-110,
May 1990.

615

