The Community for Technology Leaders
14th International Conference on Distributed Computing Systems (1994)
Pozman, Poland
June 21, 1994 to June 24, 1994
ISBN: 0-8186-5840-1
pp: 589-596
Y.M. Boura , Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA
C.R. Das , Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA
An efficient fully adaptive wormhole routing algorithm for n-dimensional meshes is developed. The routing algorithm provides full adaptivity at a cost of one additional virtual channel per physical channel irrespective of the number of dimensions of the network. The algorithm is based on dividing the network graph into two acyclic graphs that contain all of the physical channels in the system. Virtual channels are classified as either waiting or nonwaiting channels. Busy channels that a message waits for to become available are classified as waiting channels, otherwise they are classified as nonwaiting channels. Thus, a message considers nonwaiting channels first to reach its destination. If all non-waiting channels are busy, the message considers waiting channels. Messages acquire waiting channels in two phases. In each phase, waiting channels belonging to one acyclic network graph are traversed. This 2-phase routing algorithm could be either minimal or nonminimal. However, we concentrate on minimal routing. It is demonstrated that this adaptive routing algorithm can utilize the virtual paths (channels) between any two nodes more efficiently than any of the present algorithms with the same hardware requirement.<>
multiprocessor interconnection networks, network routing, graph theory, message passing, adaptive systems

Y. Boura and C. Das, "Efficient fully adaptive wormhole routing in n-dimensional meshes," 14th International Conference on Distributed Computing Systems(ICDCS), Pozman, Poland, 1994, pp. 589-596.
84 ms
(Ver 3.3 (11022016))