
I 

Improved Algorithms for Partitioning Tree and Linear Task Graphs 
on Shared Memory Architecture 

Sibabrata Ray Hong Jiang 
Department of Computer Science and Engineering 

University of Nebraska - Lincoln 
Lincoln, NE 68588-0115 

Abstract 

In parallel and distributed computing the overall 
system performance is significantly influenced b y  how 
a task graph representing an application is mapped 
onto a specific multiprocessor topology. In this pa er 
algorithms with improved erformance are proposefto 
map tree and lanear tastgraphs onto shared mem- 
ory multiprocessing archttecture. Speci cally, the task 

foa $ is balanced, .processor utilisation is .maximized, 
and the communtcataon demand on the anterconnec- 
tion network is minimized in a shared memory mul- 
tiprocessor. All a1 orithms roposed here are polyno- 
mial in time comp fexity,. W h e  bottleneck and proces- 
sor manamazation algonthms of the type are proposed 
for the rst time, to the best of our knowledge, the 

O(n + plogq) (q 5 p 5 n), in contrast with the com- 
plexity of O(n log n)  of the best known algorithm in the 
literature. Further, .we have identified cases where our 
algorithm wall run in lanear tame on the average. 

ra hs are partationed wrth our algont f ms so that the 

bandwi di th minimization algorithm has a complexity of 

1 Introduction 
The thrust in research in the area of parallel and 

distributed processin has in general been focussed 
on improving the performance of parallel applications 
on multiprocessors either by minimizing turn-around 
time or by m e m l z i n g  throughput. One area of par- 
ticular interest is how to map a iven problem onto a 
multiprocessor of a specific topofogy and architecture 
so that a desired, if not optimal, performance can be 
obtained. This necessitates constructing a partition of 
the problem into subproblems that achieves the follow- 
ing two goals: 1) the partition is load-balanced and 2) 
the inter-process (inter-subproblems) communication 
or the total communication demand on the intercon- 
nection network is minimized. Obviously, achievin 
one oal does not necessarily mean that the other g o 3  
will Re automatically achieved. I n  fact, these two goals 
are often contradictory. It is this contradictory nature 
of the problem that makq  it challen ing. The general 
problem of optimal mapping a probkm onto a multi- 
processor topology is known to be NP-complete [7]. 

In general, the structural feature of a multiproces- 
sor can be represented b a graph isomorphic to its 
topological structure. T&s architecture graph is de- 
noted by Garth = (P, L ) ,  where P = {p1,p2, ..., Pk} 

363 
1063-6927194 $03.00 0 1994 IEEE 

is the set of processors and L = {lj I 1i = (P j  ,pk) E 
P x P where processors pj and Pk are connected by a 
network channel } is the set of network links, though 
the links need not be independent. Similarly, the 
structural feature of a parallel application can be rep- 
resented by a task graph Gtask = ( N , M D )  where 
N = { t l , t 2 ,  ..., t n }  is a set of tasks comprising of 
the application and M D  = {mi I mi = ( t j , t k )  E 
N x N ;  where tasks t, and t k  need toexchange 
messages directly} is the set of data dependencies. 

a weight, w(pi) ,  associated with a node pj in Gareh 
indicates the processing speed of processor pi (e.g., 
instructions per second), whereas a weight, w(li ) ,  on 
an edge l j  of Gareh indicates the communication band- 
width of that network channel (i.e., bits per second). 
By the same token, the amount of processing require- 
ment, tu(&) (in number of instructions), is associated 
with each node ti of Gtpsk and. the amount of mes- 
sages, tu(mj) (in bits), is associated with each edge 
mi of Gtask. 

Thus, the general optimization problem can be 
formulated using the above notation as follows. To 
achieve the goal of load-balancing, a partition Gtask, 
denoted by P= {Gtaskl = ( N I ,  M D l ) ,  ..., G t a s k r ,  = 
(Nk,  M D k ) } ,  to be constructed such that 1) Nj’s are 
disjoint; 2) CtjEN, tu($), 1 _< i _< k, is approximately 
C t j E N 4 t j ) l k  = K and 3) CmjEiwD 4 m j )  - 
E:=, xmjEMDi w(mj) is minimized. For processor 
allocation, on the other hand, a mapping M of P 
onto Garth is to be computed such that the processing 
time on each processor is approximately same and the 
communication overhead is minimum. Clearly, if the 
multiprocessor is homogeneous, that is, all processors 
have the same speed and all network channels have 
the same bandwidth, then the problem reduces to al- 
locating Gtask,’s such that more message pass between 
neighbouring processors. Both problems in general are 
known to be NP-complete [7]. 

aper, we design and analyze a set of al- 
p i t h m s  &at attempt to pchieve the oals of load- 

alancing and communication minimizafion for a spe- 
cial class of applications, namely those that can be 
represented by tree or linear task graphs, on a shared 

In this 



memory architecture where w(li) is same for all i’s 
(i.e., the interconnection network is based on crossbar, 
shared bus, or multistage network, a uni ue charac- 
teristics of shared memor architecture. 8 u r  choice 
of this special class of prohems is motivated by their 
wide practical applications and theoretical significance 
as described in the next paragraph. Whereas, the rea- 
sons for considering shared memory architecture are 
two-fold. First, as one of the two major architectural 
paradigms of multiprocessing it has reat ractical as 
well as theoretical importance, as evi%ence! by the in- 
tensive research activities about and commercial prod- 
ucts of it. Second, due to it’s symmetr and unifor- 
mity in network latency, the map ing h of P onto 
Garth becomes trivial and straightkrward. 

A great number of computational problems in im- 
age processing, si nal processing, generic algorithms, 
and scientific a n 3  engineering computing are natu- 
rally structured for pipelined, or iterative (parallel) 
computation or divide-and-conquer in nature [4, 91. 
For instance, a problem, such as image/signal pro- 
cessin or generic algorithm that requires a num- 
ber o f  stages or iterations of sub;solution for its fi- 
nal solution can be viewed as being processed by a 
pipeline of sub-solutions. Thus, a sequence of such 
problems (possibly with different input parameters) 
can bv ”fed” to the pipeline and keep all stages busy. 
On tlie other hand, numerical methods for some sci- 
entific/engineering problems, such as partial differen- 
tial equation decompose the problem into strips of 
grid points of simple iterative calculations where each 
strip needs data from neighbouring strips for com- 
putation. In both cases, the parallel computation 
and communication requirement give rise to a chain- 
like (or linear) graph, where a node represents a col- 
lection of com utation, called a task, and an edge 
signifies data-Zpendence or communication between 
two tasks. Similarly, algorithms and computations 
of divide-and-conquer nature form tree ty e struc- 
tures, thus most appropriately representex b tree 
task graphs. It is common that the task grapt rep- 
resenting a problem has more tasks than there are 
processors in a multiprocessor system. Furthermore, 
the computation and/or communication requirements 
may vary from task to task and among pairs of tasks. 

Some apers closely related to our work have been 
publishelin recent years. Here we discuss about most 
relevant past works only. In his 1988 paper Bokhari [5] 
solved the problem of partitioning a linear task gra h 
for linear array architecture and host-satellite arc&- 
tecture. He considered the problem for both homoge- 
neous and non-homo eneous processors and gave ar- 
titioning a1 orithms k r  bottleneck minimization. f! i s  
to be notef that Bokhari made no attempt to mini- 
mize the bandwidth requirement which is very impor- 
tant for efficient execution of a parallel pro ram on 
shared memory architecture. The time comJexity of 
Bokhari’s algorithm is fairly high. The algorithm runs 
in O(n3m) time, where n is the number of nodes in 
the linear task graph and m is the number of proces- 
sors in the linear array multiprocessor. Bokhari’s bot- 
tleneck minimization p!oblem takes polynomial time 
when the task graph is a tree and target architec- 
ture is single host multiple (identical) satellite system. 
WheFeas bandwidth requirement minimization 
lem is NP-complete for tree task graph and in%% 

interconnection network architecture (see Theorem 1 
of Section 2.3). 

Nicol and O’Hallaron made some improvement over 
Bokhari’s algorithm in their 1991 paper [ll]. They 
suggested an improved algorithm that solves the lin- 
ear task graph partitioning problem in O(n2m) time 
for linear array architecture. Further, they solved 
the problem for homogeneous processors and homo- 
geneous communication links in O(mn log n) time un- 
der constraints of bounded weights (module execution 
weights are bounded below and communication link 
weights bounded above). Further, they solved the 
problem of artitioning a linear task graph on shared 
memory arckitecture. The time complexity of their 
algorithm is O(n1ogn) and the space complexity is 
O(n).  Hansen and and Lih solved the partitioning 
problem for linear task graph and linear array archi- 
tecture in O(m2n) time [8]. Though the time complex- 
ity achieved is no better than Nicol and O’Hallaron’s 
algorithm, their approach is different, more lucid and 
eai to rogram. 

&e &sign polynomial time sequential algorithms 
for solving the problems of bottleneck minimization 
and Drocessor minimization Droblems resDectivelv, for 
tree task gra hs executing on shared memory multi- 
processors. & the best of our knowled e, they are pro- 
posed for the first time for its ty e: #hen.we present 
an improved algorithm for banlwidth minimization 
problem, applicable to.  linear task .graphs. executing 
on shared memory architecture. This algorithm has a 
time complexity of O(n + plogq) (q  5 p 5 n, where 
n is the number of tasks in the task graph) and space 
complexity of O(n).  This is in contrast to O(nlogn), 
the time complexity of the best know a1 orithm of the 
ty e in the literature. We have also ifentified cases 
wfere our algorithm will run in linear time on the av- 
erage. The paper is organized as follows. In section 2 
the problems under consideration are formulated and 
a set of three polynomial algorithms are developed to 
solve the problems and their complexities analyzed. 
In Section 3 we resent ap lications of our algorithms. 
Finally, concluing remarFs are given in Section 4. 

2 Partitioning Algorithms 

We formulate the problem as the following graph 
theoretic problem. Given the task graph G = (V, E ) ,  
partition it satisfying the following two conditions. 

1. Execution time bound. The sum of the vertex 
weights of all connected components after 
tion should be less than or equal to some I#).arti- 

2. Bottleneck minimization. The maximum of 
the sum of the weights of the crossing :dges be- 
tween any two components should be minimum. 

However, a partition satisfying these two conditions 
may not give a load balanced partition. Therefore, 
to obtain a balanced partition we need to add one 
more condition to the existing condition set. A good 
partition should satisfy one of the followin conditions 
in addition to the time boundedness a n t  bottleneck 
conditions. 

364 



I 

1. Processor minimization. The number of con- 
nected components should be minimum. 

2. Bandwidth minimization The sum of the 
weights of crossing edges should be minimum. 

2.1 Bottleneck Minimization 

For a .general. graph the bottleneck. minimization 
problem is a var!ant of the raph partitionin prob- 
em. Graph partitionin proflem is known .to %e NP- 
complete. However in &is paper we shall give a poly- 
nomial time algorithm for bottleneck minimization for 
tree task graph under the constraint that a connected 
component is ass1 ned to each processor. 

It can be clea& seen-that for a t!ee task graph 
the bottleneck minimization problem is equivalent to 
the following problem. Given a tree T = (V, E )  find 
S C E such that 

1. The vertex wei ht of no connected component of 
T - S exceeds 8, and 

2. m%Es 6(e) is minimum for all S E satisfying 
condition 1, where 6 is the edge weight function. 

Algorithm 2.1 computes a solution to the bottle- 
neck riiinimization problem in O(n2) time. The al- 
gorithm puts all least weight edges in S first. Then 
it checks whether the vertex weights of all connected 
components of T - S are less than or equal to K .  If 
the condition is satisfied, the algorithm stops giving 
output S. If the condition is not satisfied the a1 0- 
rithin continues by adding least weight edges from &e 
remaining edges to S. 

Algorithm 2.1 
1. Sort all the edges of T in the order 

of increasing weights. 
Let the sorted list be e l , .  . . ,e , ,-~.  

2. for i + 1 to n - 1 do 
S + S U {e,}; 
if vertex weights of all connected 
components of T - S 5 K 

Output S and exit; 

Proof of correctness. Let S' be a solution to the 
problem and e, be the "mum weight edge in S'. 
Note that S' is a subset of {el, . . . , e,} and the vertex 
weights of all connected components of T - S' are less 
than or equal to K .  Therefore, algorithm 2.1 will give 
a subset of { e l , .  . . ,e ,}  as output. Thus the proof. 

2.2 Processor Minimization 

The bottleneck minimization algorithm may fra 
ment the task raph into unnecessarily many sm& 
components. &gh fragmentation may cause unbal- 
anced load leading to under-utilization of processors. 
To prevent processor under-utilization, .it is necessary 
to minimize.number of processors re uired. The bot- 
tleneck minimization algorithm diviles the tree task 
raph into several connected components. Note that 

h e r e  may be at most one edge between two connected 

components. Therefore, if all vertices belonging to 
one connected component are lumped together form- 
ing super-nodes (the weight of a super-nodes is sum 
of the weights of the vertices belonging to it), then 
the resulting graph is still a tree. NOW the roblem 
of rocessor minimization reduces to the protlem of 
fingng an edge cut S for the new task graph T such 
that, 1) the vertex weight of any connected compo- 
nent of T - S is bounded by K and 2) the number of 
connected components of T - S is minimum. 

Given a tree (or for that matter, forest) removal of 
one edge leads to exactly one more connected com- 
ponent. Therefore, minimizing the number of com- 
ponents in T - S is same as minimizing IS). We have 
adapted an algorithm presented in [l] for this purpose. 

If the task graph T is a star graph, then minimizing 
IS[ is easy. If the sum of the vertex weights of T 
is less than or e ual to K then S = 8.. If the sum 
is reater than 2 then sort the leaves in increasing 
orfer of weights. Then continue to rune the leaves 
from the beginning of the list until t i e  weight of the 
connected component containing the center of the tree 
is less than or equal to K .  The algorithm presented 
here is a generalization of this idea. The algorithm is 
demonstrated by an example in figure 1. 

Algorithm 2.2 
procmin(T : weighted tree, K )  
1 .  If T has one vertex, return(0) : 
2 .  Choose an internal node v of T such that v 

is adjacent t o  at  most one internal node; 
3 .  W * sum of a l l  leaves adjacent t o  v 

+ weight of v ;  
4.  If W 5 K then 

form a tree T' by pruning a l l  leaves 
adjacent t o  U. 
i n  T' t o  W .  

5 .  Sort the leaves adjacent t o  v i n  decreasing 
order of weights. Let the sorted list be w,.. 
. ,us with corresponding weights w l , .  . . , ws. 
L e t  e, be the edge between v and vi. Find 
minimum r such that W - x i < r  w, 5 K .  
a tree T' by pruning a l l  leaves adjacent t o  U. 
Change the weight of v in Ti t o  

return(fe1,. . . , e,} U proc-min(T', K ) )  . 
The recursive routine alvorithm 2.2 will be executed 

once for each internal no%e of 7'. If the degree of 
an internal node v is d(v)  then the routine will take 
O ( d ( v )  log d(v)) time for the processing involved with 
U. Therefore, the time complexity of the algorithm is 
O ( c  d(v) logd(v)). For a tree d(v) = O(n).  Hence, 

Therefore, the time complexity of the algorithm is 

Change the weight of v 
return(procmin(T', K ) )  . 

Form 

W - C , < , w i < K .  

O(=p(v)logd(z,)) = O(lognCd(v)) = O(nl0gn). 

O(nl0gn). 

2.3 Bandwidth Minimization 

The bandwidth minimization problem subject to 
load balancing constraint is NP-complete even when 

365 



Figure 1: 

present an algorithm to solve the problem for linear 
task graphs. 

Let P = (V,  E )  be a path, where V = { v i ,  . . . , v,} 
and E = {ei I ei = ( v i , q + l ) } .  Let a : V + ?I?+ 
and /3 : E + %+ be res ectively vertex weight and 
edge weight functions. {or convenience of notation, 
let a, = &(vi) and Pi = P(ei).  Given a non-negative 
number I< > maxi ai, find an edge cut S C E of P ,  
such that, 

1. Sum of the vertex weights of any connected com- 

2. S is of minimum weight among all subsets of E 

For any set S c E ( P )  let P(S) denote the weight of 

Let a subpath of vertex weight more than A’ be 
called a critical subpath. It is to be noted that ever 
connected component for P - S is a subpath of 
Therefore. if S C E contains at least one edge from 

M 

LchDdd4”w- y1s 

ponent of P - S is less than or equal to Ii‘, and 

satisfying (1). 

s, i.e, P(S) = xi I e , E S  Pi .  

the task gra h is a very simple tree like star. Here we 
offer a simpk proof of it. Interested readers may refer 
to [I 21 for some similar NP-completeness proofs. 

Theorem .1 Given a tree T = ( V , E )  with vertex 
weight function w : V + R>* and edge weight func- 
tion 6 E + R>’ and two positive numbers k l  and 
k2. The problem of finding an edge cut S E such 
that 6(S) 5 k l  and the vertex weights of  all connected 
components of T - S are less than or equal to k2 is 
NP-complete. 

Proof. The NP-completeness proof is by reduction 
to 0-1 knapsack problem [7]. 

Consider the 0-1 knapsack problem with weights 
w1, . . . , w,., profits P I , .  . . p r ,  minimum profit k l  and 
knapsack capacity kz .  donstruct a star graph T = 
( V , E ) ,  where V = { u , v 1 ,  ..., v.} and E = {ea I e* = 
( U ,  v i ) } .  Construct the weight functions as follows, 
W ( U )  = 0,  vi) = wi and 6(ei)  = pi for i = 1,. . . , T .  

Let S C E be an edge cut such that 6(S) 5 C p i  - 
k l  and the vertex weights of all connected components 
of T - S  are less than or equal to kz .  Let I = {i I e; 4 
S } .  Note that, 

C w i  I k l ,  C P ~  2 k2. 
; € I  i € I  

Therefore I is a solution to  the 0-1 knapsack problem. 
Similarly, given a solution I’ for the 0-1 knapsack 

problem, it may be shown that S’ = {ei I i 4 I’} is a 
solution to the bandwidth minimization problem. 

0 

The above proof may be extended for the case 
when the vertex weights are strictly positive. Further, 
the problem may be proved to be NP-com lete for 
most of the common task gra hs using simirar argu- 
ments. However, the bandwilth minimization prob- 
lem is polynomial for linear task graphs. Here we 

every critkal subpath, then P - S may not hxve any 
connected component of vertex weight more than A .  
Conversely, if P - S does not have any connected com- 
ponent of vertex weight bigger than I ( ,  then S must 
contain at least one edge from every critical subpath. 

To solve the problem, the following approach is 
taken . 

1. Consider all critical subpaths of P 
2. Find S ,  a minimum weight subset of E, such that 

for any critical subpath PI, S has an edge from 
PI. In other words, S has non-null intersection 
with the edge sets of all critical subpaths. 

As P is a path of length n, there are (7) possible 
subpaths of P .  Therefore, potentially there are O(n2)  
critical subpaths. However, for the roblem under 
consideration all possible subpaths o?vertex weight 
bigger than I< need not be used in computation. If 
a critical subpath is subpath of another critical sub- 
path, then former one is called prime subpath and later 
subpath is called dominated subpath. It is easy to see 
that the solution of part two will not change if only the 
prime subpaths are. considered. The ossible number 
of prime subpaths is bounded, above n - 1.. Let p 
denote the exact number of prime sub aths. It is easy 
to see that all p prime subpaths may \e computed in 
linear time. 

The second part of the problem is a special case of 
the weighted hitting set problem. The weighted hit- 
ting set problem is a eneralization of the unwei hted 
hitting set problem wkch may be defined as folkws. 

Definition 2.1 Given A I , .  . . , A, c U ,  find B C U 
such that 

1. Ai n B # 0 for i = 1,. . . , r ,  and 

2. IBI 5 IB’I for all B’ c U ,  satisfying (1). 

It is known that hitting set problem is NP-hard 
even when lAil I 2 V i  (see, 171). Therefore, the 
weighted hitting set problem is also NP-hard. How- 
ever, the weighted hitting set problem under consider- 
ation is more structured than a general weighted hit- 
ting set problem. More specifically, in our problem 

366 



the sets are the edge sets of subpaths of a path P. B e  
cause the edges are ordered in P, therefore all ed es 
belongin5to any subpath occurs consecutively. T%is 
proBerty elps to contain combinatorial explosion and 
ea s to a polynomial time algorithm. 

Let Pi, . . . , Pp be p prime subpaths. Let the edge 
set of Pi be E(Pj) = {eai,. .  .,ea,}. In other words, 
when the edges of P are ordered as e l , .  . . , e,,-1; then 
Pi contains all edges between ai and bi, both inclusive. 
Further, it may be assumed w.o.l.g, a1 < . . .  < up, i.e, 
Pi’s are ordered according to the increasing order of 
left end. It is to be noted that when the subpaths are 
ordered in the increasing order of left end, an edge be- 
longs to several consecutive subpaths. Alternatively, 
every edge e, belongs to subpaths Pcj , . . . , Pdj. There- 
fore, beginning from Pi, Pcj-l is the last subpath such 
that none of Pi, . . . , Pcj-l contains ej. Let us denote 
c, - 1 by r j .  Formally, 

yj = max 2.  
e j $4 ,. . ., P. 

Let Si be the minimum weight edge cut of P such 
that Si fl E(Pj) # 0 for j = 1,. . .,i; i = 1,. . . ,p .  
That is, Si is the solution of the roblem when only 
first i subpaths are considered. 50 solve the prob- 
lem totally we need to compute S,. It is easy to see 
that S1 = {e,} where e, is the minimum weight edge 
of Pi. Then the relation between Si’s may be ex- 
pressed as a recurrence relation. SI = {e,} where, os = minalijit,l/3j and Si+l = {e.,} U S,, where 
P s  + P(&.) = minai+l<jlbi+i Pj + P(Srj): 

Computing the recurrence relation in this naive way 
will take O(c:=, !Pi]) time, which may be as high as 
O(np). It is to be noted that if two edges ei and e j  
belong to exactly same subpaths under consideration, 
then the edge with higher weight will never belong 
to any S,’s. A list of non-redundant edges may be 
prepared in O(n) time. It may be noted that there 
may be at  most 2p - 1 non-redundant edges. 

Nicol’s algorithm solves the problem in O(n log n) 
time [ll]. Obviously, the naive implementation of 
our algorithm does worse than that. We presented 
the naive version for ease of understanding. N0.w 
we present a different implementation that runs in 
O(n +plogq) time and O(n)  space where n 5 p 2 q. 
Further, we have identified cases where our algorithm 
will run in linear time on the average. 

2.3.1 An O(n + plogq) time Algorithm 

To begin with the new implementation, we compute 
the prime subpaths in terms of non-redundant edges 
only. Without loss of generality assume that e l ,  . . . , e, 
are non-redundant edges. where T 5 min(n,2p - 
1). Pi, . . . , Pp are prime subpaths where E(Pi) = 
{ea,, . . .,eb,}. Let, Wi = Pi + P(S,,). At times we 
shall refer to Wj’s as W-values. Note that Wj = Pi for 
a1 < i < b1. 

Thegoal of the a l y i t h m i s  to compute minimumof 
W-values for edges elonging to each rime subpath. 
At the beginning of the algorithm alf W-values are 
not known. Only after processiiig the edges belonging 

to Pi and computin the minimum of W-values for 
those edges, we can inow Wal+l. Therefore, in our 
algorithm we process edges from left to ri ht and keep 
on updating the values of Si’s. Let ei %elong to qi 
prime subpaths, 1 5 i 5 r ,  where r 5 min(2p - 1, n - 
1). Therefore, if the updating is done in the naive way, 
for each ei we shall have to update q j  S’s. It is to be 
noted that Cqi may be as high as O(p2),  which, in 
many cases, is worse than currently known O(n log n) 
algorithm. To bring down the cost of updating to 
O(1ogqi) we use a special data structure. 

The data structure used here is a p x 4 array called 
TEMPS. It is an implementation of a ueue from 
which elements ma be removed from bo& the head 
and tail. TOP and SOTTOM are two pointers point- 
ing to the head and tail of the queue. After processin 
each edge, TEMPS contains the information about a i  
the prime subpaths the edge processed belongs to. 

After processing i-th edge, TEMPS will contain 
the following information. The first two columns (L 
and R column) of each row will point to a range over 
the indices 1, . . . , p. Each prime subpath with index 
in the ran e has same minimum W-value after ro- 
cessing ei. %he minimum W-value is kept in the tRird 
column (W column). The fourth column (S column) 
contains the edge, e j  , for which the minimum W-value 
is achieved and SYj . 

Consider the value of T E M P 3  after initialization, 
i.e, after processing all edges belonging to Pi. In this 
case PI contains e l , .  . . , e4. The first row of TEMP-S 
shows that after processing e4, the minimum W-value 
for PI to P 2  is 4 and it is achieved for e2. Further, at  
this stage, the minimum W-value for P31 to P 4  is 5 
and it is achieved for e4. 

The process of initialization is as follows. Initial- 
ize TEMP-S(3, bl) by wb,, TEMPS(4, bl) by {et,,}, 
and TEMPS(2,bl) by bl. Let z be the maximum 
index less than b l  such that Wz < Wbl. Initialize 

TEMPS(2, bl  - 1) by c and TEMPS(4, b l  - 1) by 
{ez}. Continue this way until all edges in PI is pro- 
cessed. See step 1 of the algorithm in appendix for a 
formal description. 

Few thin s are to be noted here. First, the length of 
the queue $EMPS never exceeds qi after processing 
ei. Second, the third column (W column) in TEMP-S 
will always remain sorted in increasing order. There- 
fore, any search on W column can be done in O(log 4i )  
time. 

All. edges not in Pi will be processed from left to 
ri ht in similar way. Before processing ei, check with 
T k M P S  whether it contains information about any 
prime sub ath that does not contain ei. Note that 
there m a y t e  at most one such subpath and that sub- 
path must be pointed by the L-column of the TOP 
row. Therefore, the checking can be done in 0(1) time. 
If there is such a path, the processing for that ath is 
complete and the W and S columns of the T 8 P  row 
contain the minimum W-value and S-value for that 
path. Store the S and W value for the path. Discard 
the ath from T E M P S  It is done by increasing the 
L coyumn of TOP row b one. Check that whether 
TOP row consists any vatd range, i.e, if the value of 
L column exceeds the value of R column. If so, delete 

TEMPS(1, bl) by z + 1, TEMP-S(3, bl  - 1) by Wz, 

367 



the row itself. 
At this stage all grime sub aths belonging inside 

the ranges ointed y L and k, columns contain e;. 
Compute $. To determine for which prime subpaths 
the minimum W-value needs to  be chan ed perform a 
binary search on the W column of T E A S .  The out- 
come of the search will give a row index (say a), such 
that TEMP_S(a,3) 2 W; and TEMP-S(a - 1 , 3 )  < 
Ti.. If no such a exists, no update is necessary. The 
minimum W-values for all prime subpaths pointed by 
a-th and subsequent rows need to be updated. Delete 
all these rows and add a new row pointing to all prime 
subpaths pointed by deleted rows. Note that this can 
be done in 0 ( 1 )  time. The W column and S column 
of the new row will contain Wi and { e i }  U S,, respec- 
tively. 

T E M P S  needs to be updated again if any new 
prime sub ath begins with e;. If so, thai  information 
needs to {e included in TEMPS.  If W value of e .  
is already in the table (W column, BOTTOM row) 
then increase the value of R column BOTTOM row 
by one. Otherwise, create a new row pointing to the 
new subpath and containing the W and S values. 

The formal description appears in appendix. 

2.3.2 

Note that the algorithm iterates O(p)  times and each 
step takes (logqi) time. Therefore, the time com- 
plexity of the algorithm is O(p1ogq) time, where 
q = Cq,/r and r is the number of non-redundant 
edges. 

The best known algorithm known so far ( [ l l ] )  runs 
in O(n1ogn) time. Whereas our algorithm runs in 
O(p1ogq) time. It is easy to see that n 2 p 2 q. 
Therefore, the worst case com lexity of our algorithm 
is at  least as good as the best Known algorithm. How- 
ever, it is possible to construct pathological cases 
where nlogn = O(p1ogq). Hence, we do not claim 
much improvement in the worst case. 

We have done extensive simulation to obtain the 
relation between n,  p ,  q ,  K, plogq and maximum ver- 
tex weight (maximum module execution time). The 
outcome of those simulations has been summarized in 
figures 2. From those figures it can be seen that for 
given n, plogq may be very low in many cases (par- 
ticularly for high and low K ) .  Therefore, it may be 
said that our algorithm exploits the nature of data and 
runs in considerably less time if data ermit, while re- 
tains the worst case performance at  yeast as ood as 
the best known current algorithm. From the f$ures 2 
it may be noticed that the maximum value o plogq 
is much less than n log n. Therefore, we expect a con- 
stant time improvement even in the worst case. 

Note that is bounded b the length of the first 
prime subpatf;: in which e; telongs to Therefore, 
the expected is bounded by the expected lengths of 
prime subpads in terms of non-redundant edges. If 
the vertex weights are distributed uniformly over the 
range [wl, wg], the average length of prime subpaths 
will be bounded by 2K/(wl + wg) 5 Klwg. That is, 
if Klwg is bounded by some constant, then q also will 
be bounded by the same constant on the average. 

Another factor about our algorithm needs to be 

Merits of the New Algorithm 
Figure 2: 

noticed. The log factor in the time complexit oc- 
curs for the searcg on the TEMP-S arra At tKe i- 
th step, T E M P 3  contains information agout q; sub- 
paths. Therefore, number of entries in T E M P S  can 
never exceed qi at i-th step. However, TEMP-S con- 
tains exact1 one entr for all subpaths with same 
minimum d value. Tlerefore, in most of the cases, 
TEMP-S will contain less than q; entries at  i-th ste 
except when W values will occur sorted in ascenx; 
ing order. If we assume that W values are occurring 
at  random (with respect to relative order), the argu- 
ment in appendix B shows that the average length of 
T E M P 3  at i-th step will be O(1ogqi). Therefore, our 
algorithm will run in O(p1oglogq) time on the aver- 
age. However, more often than not W values will have 
a tendency to grow towards end. dence, the expected 
length of TEMP-S array will be more than O(1ogqi). 
But how bi ger it will be is not known. Further, the 
fact that d v a l u e s  have a tendency to grow towards 
end may be utilized to devise a k-ary search (k de- 
pending on the distribution of vertex weights and I<) 
instead of binary search. If properly designed such a 
search may reduce the search time by a log factor. We 
are still working on these problems. 

3 Applications 

The a1 oritlims developed in this pa er deals with 
a special &iss of applications whose tasf graphs are of 
linear or tree t pe, as shown in Figure 1 and assume 
that the under6ing architecture is shared memory ar- 
chitecture. The unique characteristics of shared mem- 
ory architecture that it's network latency is symmetric 
and uniform renders a straightforward map ing of the 
optimal1 partitioned graph onto the availahe proces- 
sors in t i e  multiprocessor, provided that the number 

368 



I 

of processors is greater than or equal to that of the 
partitions. In this section we discuss two examples to 
which our algorithms may be applicable. 

Real-Time Computing The general nature of 
real-time computing is that a task must be completed 
by a given deadline. In real world applications, fail- 
ures to meet the deadline can result in damaging, if 
not catastrophic,. consequences. One way to meet the 
time constraint is to explore the hidden parallelism 
in the application, that is, to partition the roblem 
into concurrently executable subproblems. doin 
so, however, one must also co-unter-balance the a# 
verse impact of such factors as interprocess communi- 
cation cost and reliability that are inherent in parallel 
and distributed rocessing. Consider a real-time task 
T to be executecfon a shared memory multiprocessor, 
with the following constramts. 

The time deadline for computing T is k, a positive 
const ant. 

T can be maximally divided into a set of subtasks 
T = {t l , t2 ,  ..., tn} and there is a data depen- 
dency dpi between ti and ti+1 for 1 5 i 5 n - 1. 

ui(ti) 5 k, 1 5 i 5 n,  is the total processing 
time required for task ti including computation 
and communication. 

w(dp i ) ,  1 5 i 5 la - 1, is a weight associated with 
data dependency dpi reflecting the communica- 
tion/resource cost (i.e., tr&c/resource demand 
on the interconnection network) and/or reliabil- 
ity factor (i.e., some data are more sensitive and 
less tolerant to network noise/fault than others). 

These constraints mandate that the problem be 
partitioned in a way such that: 1) all subproblems 
must be completed within time k, 2) impact of net- 
work cost and noise must be minimized and 3) the 
highest traffic demand of a sin le processor on the 
network must be minimized. dore  specifically, T is 
to be partitioned into disjoint sets TI = {t l ,  ... ti l} ,  
Tz = {tj,+l, ..., tia}, ..., and Tp = {tip-l+l, ..., tn} such 
that, for all 1 5 j 5 p ,  w ( q )  = C;Lij-l+l w(t1) 5 k 
and ~ ( d p i , )  is minimum and m&-.& w(dpi , )  
is minimized. 

It is not difficult to see that such an optimal par- 
tition can be readily constructed by applying the al- 
gorithms of Section 2. The resulting partition, with p 
connected comDonents, can be directlv maDDed to the 
shared memory multiprocessor. The partiiibning and 
mapping process is illustrated in Fig. 3. 

Distributed Discrete Event Simulation One 
important parallel and distributed processing applica- 
tion is discrete event simulation [lo]. In a distributed 
discrete event simulation, the state of each process 
changes upon the occurrence of an event, which of- 
ten exists in the form of a message passed from an- 
other process, at  a discrete point of time. A process 
represents an integral part of the simulated system, 
for instance, a logic gate, a basic circuit, or a sub- 
module of a logic system. Thus, such a simulation 

can be re resented by a task graph, as defined in Sec- 
tion 1, wiere an edge links two processes which need 
to ass messages to each other directly. In the case 
of kgic circuit simulation, an edge also represents a 
physical link between the two processes (or gates). A 
weight is associated with each process to indicate its 
processin requirement, whereas the number of me? 
sagGs nee%ed to be passed between two processes is 
si nified b a weight associated with the connecting 
efge. BotK quantities in general are determined by 
the requirement of the simulation, the task structure, 
and the techniques used to simulate. When some sim- 
ulation techniques are used [lo], they are often fixed 
regardless where the processes are allocated. 

While there-has been a significant amount of re- 
search on distributed simulation in general and dis- 
tributed logic simulation- in particular one problem 
was often omitted in previous studies. t h a t  is that of 
how to strategically partition a simulation task graph 
(e.g., a circuit) on a multiprocessor so that the load 
on all processors are balanced and the number of mes- 
sages assed among processors is minimized. Due to 
the Nb-Completeness of the general problem, most 
current partitioning strategies are based on heuristic 
solutions [6, 3, 21. However, when the simulated sys- 
tem is circular or linear in nature or can be approxi- 
mated by a linear task gra h, such as a circular t pe 
logic circuit or network a n 8  assuming that the unier- 
lying simulating machine is shared memory architec- 
ture (a likely event in light of the large presence of 
shared memory multiprocessors in the form commer- 
cial products or research prototypes), the problem re- 
duces to the special case for which our al orithms can 
be ap lied, giving rise to an efficient soktion. More 
specifhly,  if the topological structure of the simu- 
lated system renders a linear process graph then the 
a&ication of our algorithm becomes straightforward. 

t erwise, for a more eneral s stem, we may first ap- 
proximate the originafs stem g y  generating a su er- 
gra h, which is linear, gom the process graph, t ien 
appfy the algorithm to the super-graph. 

4 Conclusion 

Strategically partitioning rocess gra hs onto mul- 
tiprocessors so to balance t\e load wh8e. minimizing 
the communication overhead is of great importance. 
This is because it enables one to improve the qual- 
ity of and to exploit potentials in arallel and dis- 
tributed processing. Since the genera? problem is NP- 
complete, current solutions to the problem have been 
mostly based on heuristic algorithms. In this paper, 
we investigated a special case of the problem, namely, 
the one with tree and linear task graphs. We design 
and analyze an algorithm that solves the partitioning 

roblems for this special class of applications. To our 
Knowledge, the bottleneck minimization and proces- 
sor minimzation algorithms presented in this paper 
are first of their type. The bandwidth minimization 
algorithm pro osed has an improved time complexity 
over the best Enown algorithm in the literature. 

The algorithms developed, while limited in their 
scope of ap lications, have a numbef of advantages: 
The algoritims are simple and efficient; the result- 
ing partition can be mapped straightforwardly to a 
common multiprocessor architecture, namely, shared 

369 

r- 



memory architecture; and more eneral cases may be 
approxlmated by generating a h e a r  or tree super- 
graph of the original process graph. 

Appendix A 

Algorithm 4.1 
1. Initialization. 

BOTTOMtTOPt  b1; TEMPS(3,bl) t Wb,; 
TEMPS(2, bi) +- bi; TEMPS(4,bi) + { e a l } ;  
for a +- bl  - 1 downto a1 do 

If Wi <TEMPS(3, TOP) then 
TEMPS(1,TOP) +- i + 1; TOP +- TOP - 1; 
TEMPS(4, TOP) +- { e i ) ;  

TEMPS(3,TOP) + Wi; TEMPS(2,TOP) t i; 

TEMPS(1,TOP) + 1; 

TEMPS(3,i) +- 00 for a.ll i > BOTTOM; 
TEMPS(3,i) +- -00 for all i < TOP; 

2. for i t b l  + 1 to T do 
j + TEMPS(1, TOP); 
if b j  < i then 

Sj + TEMPS(4, TOP); 
TEMPS(1, TOP) +- TEMPS(1, TOP) + 1; 
if TEMPS(1, TOP) >TEMPS(Z,TOP) 

TOP - TOP + 1; 

2a. Find s such that TEMPS(3,s) 2 Wi 
and TEMPS(3, 3 - 1) < W,; 

TEMPS(3, 3) + Wi; TEMPS(4, S )  + { e , }  U S-,,; 
TEMPS(2,s) +-TEMP-S(2,BOTTOM); 
j tTEMPS(2,s) ;  
if aj+l = i then 

if s > BOTTOM then 

BOTTOM c s; 

TEMPS(2,s) + j + 1; 

TEMPS(1,s) tTEMPS(2,s) ;  

Solution S, is TEMPS(4, BOTTOM); 

Appendix B 
Let e; belongs to prime subpaths P,, . . . , Py. Let 

the edges with indices less than or equal to i belonging 
to P,, . . . , Py be e , ,  . . . , ei .  Let the minimum W-value 
for e,, . . . , ei  be Wjl. If W-values are distributed at  
random, jl will at  the middle of the range j, . . . ~ i 
on the average. There will be exactly one entry in 
T E M P S  for all prime subpaths containing e j l .  By 
the similar argument there will be exactly one entry 
corresponding to minimum W-value over the range 
e j l + l ,  . . . , ei. By repeating this argument we show 
that there will be O(1og i - j + 1) entries in T E M P S  
on the average. Note that i-j+l 5 2(y-z+l) = 2q;. 
Therefore, there will be O(1ogqi) entries in T E M P S  
on the average. 

References 

[l] K. S. Bagga et al., “Some Bounds and an Algo- 
rithm for the Ed &Integrity of Trees”, To appear 
J. Comb. Math. bomb.  Comp. 

[2] E. Barnes, “An Algorithm for Partitioning the 
Nodes of a Gra h” , SIAM J. DISC. A L G .  METH,  
Vol. 3, No. 4, &ec 1982, pp. 541-550. 

[3] E. Barnes and A. Vannelli, A New procedure for 
Partitionin the Nodes of a Graph, Working Re- 
port No. 822,  University of Toronto, 1985. 

[4] D. P. Bertsekas and J. N. Tsitsiklis, Parallel 
and Distributed Computation-Numerical Methods, 
Prentice-Hall, 1989. 

[5] S. H. Bokhari, “Partitioning Problems in Paral- 
lel, Pipelined and Distributed Computing”, IEEE 
Trans. Comp.,  Vol. 37, No. 1, Jan. 1988, pp. 48-57. 

[6] C. Fiduccia and R. M. Matteyses, “A Linear-Time 
Heuristic for Improvin Network Partitions”, Proc. 
Desrgn Automation &nJ, IEEE, 1982, pp. 175- 
181. 

[7] M. Garey and D. Johnson, Computers and In- 
tractability - A Guide to  the The0 of NP- 
completeness, W. H. Freeman and Co. yew York. 

[8] P. Hansen and K-W Lih, “Improved Algo- 
rithms for Partitioning Problems in Parallel 
Pipelined and Distributed Computin I E E k  
Trans. Comp., Vol. 41, No. 6, Jun. 199K;p. 769- 
771. 

[9] J .  Ja’Ja’, A n  Introduction to  Parallel Algorithms, 
Addison Wesley, 1992. 

[lo] J .  Mishra, “Distributed Discrete-Event Simula- 
tion”, A C M  Computing Surveys, Vol. 18, March 

[ll] D. M. Nicol and D. R. O’Hallaron, “Improved Al- 
gorithms for Ma in Pipelined and Parallel Com- 

utations” IEI!? $an,. Comp.,  Vol. 40, No. 3, 
b a r .  1991:pp. 295-306. 

[12] S. Ray and J .  S. Deogun, “Computational Com- 
lexity of Weighted Integrity”, To appear J. Comb. 

1986, pp. 39-65. 

%lath. Comb. Comp. 

370 


