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Abstract 
This paper presents algorithms for distributed coin 
tossing. Distributed coin tossing furnishes a symme- 
trical way to break the symmetry in a distributed sys- 
tem. They allow the conflicts arising from competing 
remote sites t o  be overcome an a fair (equiprobable) 
manner: any site has an equal chance of being se- 
lected. It is also shown how these algorithms may be 
used to obtain a total order between competing sites of 
a system. Moreover, in each case the outputs of our 
algorithms are totally unpredictable . 

1 Introduction 
This paper presents algorithms for distributed coin 
tossing. Distributed coin tossing furnishes a symme- 
trical way to break the symmetry in a distributed sys- 
tem. 
The proposed coin tossing mechanism may be used 
in many cases of distributed algorithms. I t  may be 
an alternative to other conflict resolution principles 

e.g., static priority, timestamp messages 

They allow the conflicts arising from competing re- 
mote sites to be overcome in a fair (equiprobable) 
manner: any site has an equal chance of being se- 
lected. Finally, we show how these algorithms may be 
used to obtain a total order between competing sites 
of a system. 
The first algorithm selects a winner among n agents, 
while the second chooses it among only p competing 
agents, in a global configuration of n agents, ( p  5 n) .  
In the first case, the sites initially know that n nodes 
are actually competing. The problem lies in choosing 
one of the competing sites, then informing each one of 
the n sites about the winner of the round. 
In the second case, competing sites do not know each 
other. The problem can be regarded as that of infor- 
ming each one of n nodes about the p competing sites, 
then selecting one site among the p competing sites, 
and informing each one of the n sites about the winner 
of the round. 
Finally we show how the previous algorithms may be 
used without any additional communication to 
obtain a total order between competing sites. 
It is important to note, that our approach allows each 
site (competing or not) to have a complete knowledge 
of the ordering. 
This common knowledge of the order is sufficient to 
determine useful classical hierarchies such as spanning 
tress [RAYM 89, AGR 891 but also more optimized 

[:E281h], ... 

structures such as balanced trees . This motivates the 
interest for deriving a complete order. 
Many criteria may be considered for assessing dis- 
tributed algorithms [RAY 881: among these are the 
number of exchanged messages, the assumptions on 
the topology of the communication network, and on 
the quality of the data transfer service, ... 
Here, symmetry and unpredictability are the main cri- 
teria. 
The unpredictable aspect of the output is precious 
when considering the problem of fault tolerance : in a 
case where the elected site is always (often) the same, 
it may be the privileged target of external aggressions 
and even in the absence of external assault its load 
will be more important increasing, its probability of 
failure. 
The notion of symmetry appears more or less expli- 
citly in many papers on distributed systems [BUR 81, 
BOU 871: Symmetry can often be viewed as the ab- 
sence of any kind of (hidden) monitor. 
Luc BougC defines the symmetry of an algorithm in the 
following manner [BOU 871: " A n  algorithm is symme- 
trical if during computation no process enjoys a stat- 
ically defined privilege. I f  process P, acquires some 
privilege during computation C ,  for  instance b y  win- 
ning an election, then, for  any process P, there exists 
a computation C', during which P, acquires this priv- 
ilege. ... Symmetry does not prevent a process from 
knowing its identifier, but from using the latter to es- 
tablish a priority amon,g processes. Symmetry requires 
that any privilege be dynamically negotiated, the pro- 
cesses having the same rights and duties during this 
negotiation". 
The proposed algorithms are symmetrical because : 

- each site runs the same code, 
- no site benefits from a privilege known in ad- 

vance, 
- every site is equally involved in the final deci- 

sion. 
The level of symmetry of algorithms is clearly assessed 
in terms of probability, due to the specific aspect of the 
developed application: i.e., random choice. A simple 
combinatorial calculus shows that, whatever the site, 
its probability to win is not dependent on its identifier, 
or on its local choices. 
As a result, the level of unpredictability may be also 
evaluated. In a normal case (in absence of cheating), 
the output of these algorithms is totally unpredictable. 
To predict the result of an election or to predict the 
total order associated with a consultation, a site needs 
to know all the values exchanged by its partners. 
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In terms of complexity, the algorithms require (n- 1)2 
messages for n sites: each site sends a message to 
its n - 1 partners, and waits for the respective ac- 
knowledgments. The size of the exchanged messages 
is bounded. 
The presented algorithms for distributed coin tossing 
may be used in many fields of distributed computa- 
tion. Solving the mutual exclusion problem is the most 
natural application; another concerns the resolution of 
conflicts by means of remote agreement. 
This paper is organized as follows. Section 2 deals with 
the algorithm for randomly selecting one agent among 
n. Section 3 presents the algorithm for randomly se- 
lecting one agent from p among n. Section 4 presents 
an extension of the previous algorithms allowing to 
obtain a total order between competing sites. 
Communication Assumptions: 
The following hypotheses are made on the communi- 
cation protocol for data transfer between sites. 
(Hl)  Each site may (directly or indirectly) communi- 
cate with any one of its partners, 

I 1  H3 A reliable transmission medium is employed: 
messages are received in the order they were issued 
and are neither lost nor duplicated. 
p34) A node is identified by an identification number, 
rom 1 to n,  known to the other n - 1 partners. This 

a priori numbering does not affect the symmetry of 
solutions as formally shown in the sequel. As a point 
of fact, for a particular node the probability to win 
does not depend on its identification number. 

2 Random choice among n remote sites 

H2 Transmission delays are bounded, 

When n sites initially compete, a solution involves the 
following two steps: 

- break symmetry by selecting one site among 
n, - let all other sites know the winner. 
Each agent selects one value among the set {l,..,n} 
and sends it to each one of its n - 1 partners. Then 
a site knows n values: its own choice and the 71 - 1 
choices of its partners. A site checks whether it is the 
winner or not by doing the following computation: a 
site wins iff the sum modulo n of these values plus one 
is equal to its identification number. 
- Let ( ~ 1 , .  . . , U “ ) ,  be the vector of exchanged values 
by n sites, 
- Let G: { 1, .., n}” H { 1, .., n}  be the mapping defined 
by 

G(u~,...,u,) = l + [ ( c u j )  mod (n ) ]  

Site i which has n values u l , .  . . , U ,  wins iff 

Algorithm Properties: 

Termination of the algorithm in a consistent state: 
- computation terminates, 
- one and only one site wins, the others lose, 
- all sites know the winner. 

- each node has an equal chance of winning, 

j =n 

j = 1  

G(U~,,..,U,) = i 

Equiprobability to win for any site: 

- any value selected by a single node leads to the 
same opportunity of winning for this node. 
Note: The absence of cheating is based upon the fact 
that a node sends its value before receiving any value 
from its partners. 
2.1 Computation Termination 
As transmission delays are bounded, the value ex- 
change takes a finite amount of time. The reliability 
of the medium ensures that any site knows the same 
set of n values at the end of exchanges . 
Function G remains the same for all sites and uses the 
same values, thus leading to the same result in all sites. 
Each site is assumed to  possess a unique identification 
number i, i E { 1, . . . , n}, ensuring that one and only 
one site wins, (the mapping G is surjective). 
Finally, each site can identify the winner because it 
knows all the partners. 
2.2 Equal probability to  win 
Let P( i )  be the winning probability of site i, and 
P ( i ,  w )  the probability that site i wins and that it 
chooses value w. 
It is correct to consider in  the sequel only the probabi- 
lity P( i ,  w) instead of considering P, i) the probability 

we suppose that : the number selected b y  each node as 
uniformly distributed on the range 1 , .  . . , n. This im- 
plies that the probability that site i chooses value w ,  
Pi(,), is constant: independent of i and w. 
To demonstrate fairness (in its usual sense) the follo- 
wing properties have to be satisfied. 

that i wins given that it chooses w. 4 his holds because 

( P l )  for a site, the probability to win does not de- 
pend on its identification number: 

V n  > 1, V i , j  E (1, ..n} : P ( i )  = P j )  
(P2) for a site, the probability to win 6 oes not de- 

pend on the value it selects: 
Vn E N , V i  E ( l , . . n } , V v , w  E (1, ..n} : 

(P3) for site i, sending value w ,  the probability to 

Vn E N , V i , j  E {l,..n},Vw,w E {1,..n} : 

Property P1 deals with weak equiprobability : Each 

Property(P2) ensures that there exists no value which 
increases the probability of winning for a specific site. 
Property (P3) deals with strong equiprobability : any 
site is considered in the same manner; its chances of 
winning do not depend on identification numbers and 
the selected values. 
The following holds because all sites operate with the 
same set of values : 

2.2.1 Strong equiprobability proof (P3) 
Before sending a value, the chance of winning does not 
depend on i, the identification number, or on U ,  the 
selected value. 

Let p(j, C “1 i, w) be the set of arrangements in which site i 
chooses value v and wins. 

P ( i ,  v) = P ( i ,  w) 

P ( i ,  v) = P ( j ,  w) 

win does not depend on i or on w: 

site globa \ h  ly as the same chance of winning. 

(P3) * (P2) * (Pl) .  

vn E N , vi,j E (1, . .n) ,Vv,w E (1, ..n} : P(i ,v)  = 
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To show that P(i ,  v) is independent of i and v, it suf- 
fices to show that the number of elements, (Card: car- 
dinal), of C(i ,  v only depends on n. 
P(i ,  v) = Curd 2 C(i, v ) ) /Card(AE)  
where Ak is the set of k-tuples whose domain is 
(1,. . ., ny. 
C(i ,  v) counting 
In the case of n sites n values are requested to deter- 
mine a winner. In other words during computation of 
a winner, starting from a (n-l)tuple, an ultimate nth 
value is requested to select any one site. 
Let C(,, ,..., a,)(i ,v) be the set of values a E (1, ..,n} 
such that site i wins by selecting value v, the n - 
2 other sites have already chosen values (ag ,  . . . , a,) 
respectively. 
C(a3, . . . , av ) ( i , v )  = {b E ( 1 ! . . , 7 1 }  I G(b,v,as,’..,av) = 
a }  
Let An-2 be the set of (n-2-)tuples of values in 

The following equalities hold: 
(1, .., 73. 

C( i ,  v) = x c(aS;. . ,av)( i ,  U) 

~ a r d ( ~ ( i , v ) )  = nn-’ x Card(C(,, ,..., a v l ( i , v ) )  

The value of Curd(C(a3,.. . ,av)(i,  v)) has to be coin- 
puted. 
Let b be the least integer such that b E C(a3, ..., a v ) ( i ,  U) 
and 

k=n  

b = [(i - 1) - (v + u k ) ]  mod (n )  
k =3 

proposition: b is the unique element of C(a3,., , ,aw)(i ,  U )  

- all the elements of C(a3,...,av)(i, w) are congru- 
ent modulo (n) 

- As ,..., a v ) ( i , v )  c (1, .., n} ,  then 
q a , , . . . , a ” ) ( i ,  = {b}. 
As Card(C(,, ,..., a v ) ( i , v ) ) )  = 1, then Card(C(i,v) 
lZn - 1 x 1, finally: 

[ P ( i ,  U )  = Card(C(i, v ) ) /Card(A;)]  3 P( i ,  v )  = 1 

and since P,(i) = (from P ( A  given B )  
P ( A  and B p(B) I )  we finally deduce 

v =n v =I1 

n‘ 

[ P ( i )  = P,(i).P;(v) = P ( i ,  v)] 3 P ( i )  = 1 / 1 2  

v = l  v=l 

3 Random choice between p out of n 
sites 

The algorithm presented in the former section selects 
a winner among n competing sites. To use it, any one 
among the n sites is supposed to know all the other 
sites and whether they are competing. 
In most cases, this knowledge is not available since: 

- not all sites are competing, 
- a competing site does not know its competi- 

tors. 

The former algorithm selects one site out of n. To 
apply this algorithm would require organizing a poll 
round to allow the competing sites to know each other. 
Then any site knows the p competing ones, and a ran- 
dom choice of one out of p may proceed. 
With respect to the number of exchanged messages, 
this solution requires ( n  - 1)’ messages for the con- 
sulting phase and ( p -  1)2 messages for random choice. 
In this section, a variant to  the former algorithm is 
proposed, which only requires (n  - 1)’ messages to se- 
lect one site between p sites, in an n site configuration, 
( p  5 n).  The variant consists in merging consulting 
and selecting phases, so that the total number of mes- 
sages remains limited to (n  - 1)’. 
To carry out the poll and selection phases, the follo- 
wing rules are adopted: 
one site initiates a random choice by immediately 
sending its ballot. 
When it receives this value, the site concerned regards 
it, as a ”consult request”.Then, the site is free to ei- 
ther participate by returning his ballot or to opt out 
by sending a dedicated value. In the sequel, the dedi- 
cated value is zero. 
3.1 Solution 
Each agent, wishing to vote selects one value out of 
(1, .., n!}  and broadcasts it to the n - 1 other sites. A 
site which opts out returns value 0. 
As in the previous section, we suppose that the number 
selected b y  each node is uniformly distributed on the 
range 1, .  . . , n!. This makes the probability that site i 
chooses value v is constant: independent of i and v. 
Note: the n! value is discussed later, (section 3.2.3). 
For a given vector (al, . . . , U,), two kinds of nodes are 
considered: 
- active: an active node did not choose value zero. 

Act ive( (a l , . . . ,a , ) )  = { i  E { l ,n}  such 
that ai > 0) 
- passive: a passive node chose value zero. 

Passive((a1, . . . , a,)) = {i E { 1, n}  such 
that a; = 0) 
Following this exchange, each site knows n values: 
that is, the one it chose and the values chosen by its 
n - 1 partners. 
The first step consists in renumbering the active sites 
from 1 to p :  the idea is to associate with each active 
site its rank in the ballot, that is from 1 to the number 
of active sites p .  
3.1.1 Relabel ing Principle and Local Compu- 

tation 
Roughly speaking, the rank of site i, denoted N-E(i), 
will be equal to i minus the number of passive sites 
whose identifier is less than i. 
Let Passive((a1,.  . . ,a,)) (1,. . .i - 1) be the set 
of passive sites whose identification numbers are less 
than i. Then 
N-E(i) = i - Card([Passive((al,...,a,))n{l,...,i- 

To know the outcome, a site does the following com- 
putation: 
The site wins iff the sum modulo v of these n values is 
equal to its rank minus one, where v is the number of 

111) 
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active sites. Computation can be detailed as follows: 

- ( ~ 1 , .  . . , a,) : vector of values exchanged by the n 
sites. 
- v = Card(Active((a1,. . . , a,))) : number of active 
sites. 
- G : (0, .,, n!} ,  H ( 1 ,  .., v}, mapping such that 

j =n 

G ( a i , . . . , a , )  = 1+[(CQj) mod (U)] 

Site i, which knows n values a l ; . . , a ,  wins iff 

3.2 Computation Correctness 

0 at the most, one active site wins, 

0 the passive sites lose, 

0 every site knows the winner. 

j=1 

G ( u ~ ,  . * .  , U,) = N - E ( i )  

The algorithm terminates in a consistent state: 

Strong equiprobability of winning per active site: 
Two active sites have an equal probability of winning 
whatever the values they respectively chose. 
3.2.1 The algorithm terminates in a consis- 

t en t stat e 
The proof is analogous to the one of Section 2.1. Ter- 
mination is again guaranteed and every site knows the 
same set of values, at the end of the round. 

0 As the computation function G remains the same 
irrespective of the site and uses the same set of 
values, then the output is identical on all sites. 

0 By construction, G is a surjective map- 
ping from the set of choice vectors on the 
set { 1, - . . , Card(Act ive)} ,  the result selects 
a single active site, (i.e. whose rank E 
{ 1 ,  . . . , Card(Active)}). 

0 Every site can compute the rank of any other site, 
and therefore the winner's identity. 

3.2.2 Equiprobability of winning 
As in Section 2.2.1, the strong equiprobability coiidi- 
tion ( P 3 )  is directly shown. 
For any configuration of p sites ( p  5 n ) ,  the probabi- 
lity of winning must not depend on the identification 
number and on chosen values. 
The following notations are used. 

CT<, ,~ ,~~ ,..., ,,>, set of rounds where active sites are 

C T < ~ ~  , U 2 , .  . .,U ,, > (vi), subset of Cf<ul ,Uz,. . . ,U > for which 

211, v 2 ,  . ' . , U , .  

site o; (vi E ( V I , .  . .,vu}) wins. 

which site vi wins by selecting va\ue U .  
~ T < u l , u z , . . . , u , > ( V i ,  U), subset of c T < u l  U Z ;  .,U,>(%) for 

P~<ul ,uz  ,..., ,,> (vi), site vi probability of winning 
when competing with sites V I ,  712, . . . , U,. 

P ~ < ~ ~ , ~ ~ , . . . , ~ , > ( ~ i , 2 1 ) ,  site vi probability of winning 
when competing with sites v1, v2, . . . , vu and when 
it chooses value v. 

C(a, ,.._, a , ) ( V i ,  v), set of values b E ( 1 ,  ..,n!} such that 
G(b, W ,  ~ 3 , .  . . , U,)  = N-E(vi)  

C(a3,...,a,)(v;, v) counting 
Let b the least integer such that b E C(a3, ..., a,)(virv) 
and 

k=u 

6 = [(vi - 1 )  - (w + a k ) ]  mod (v) 
k = 3  

Let ( b i )  be a sequence of values derived from b by: 
- b l = b + v  
- b ,  = b + m x v 

By construction, any value bi less than n! is in- 
cluded in C(,, ,..,, an)(v i ,  v). Furthermore, any element 
of C,,, ,,.., a,)(vi,v) is congruent to b modulo v. 
To compute C(a3,,..,a,)(v;, w) it suffices to compute the 
greatest possible value m such that b + m x v < n!. 

In other words, find m such that b + m x v 5 n! 
and 6 + ( m  + 1 )  x v > U !  
proposition: m = ( n! / v ) - 1 

As v < n,  v divides n!,  and m is indeed an integer 

b+(m+l)xv  = b+(n! /v)xv  then b+(m+l )xv  > 
n! 

b + m x v = b + n! - v where b E ( 1 ,  ..U} then 
b + m  x u  I n !  

Finally, we get c,,, ;.., ,,)(Vi, U ) )  = { b , b  + V , . ' . , b  + 
( ( ? & ! / U )  - 1)  x U }  

CU1.Cl(C(,,, U ) )  = n ! / v  

3.2.3 Choice of n! 
To arrive at an equal weak probability of winning ( P l )  
(cf 2.2) in the case of p active sites vi, v2, . . . , wp must 
satisfy (cf notations Section 3.2.2) 
CT<uI,u2;..,up>(Vi) = CT<u,,uz,...,u,>(vj) vi, j E 
( 1 ,  . . , P I  
In addition 



The following must hold: Card(CT<u,,ua,...,u,>) = p x 
Card(CT < u 1 ,v z , . , ' , u p  > 
In general, Cnrd(C~<,,,,, ,..., ,,,>) = V* where V is 
the cardinal of the set of possible ballots, and p the 
number of active sites. 
For p to divide VP, V must be a multiple of p .  
To ensure the weak equal probabi- 
lity whatever the number of active sites, V k  must be 
a multiple of IC for all IC 5 n. The least possible value 
of V is then the least common divisor of all integers 
less than or equal to n. 
The strong equal probability (P3) is reached as soon 
as the number of elements of the set of possible values 
is a multiple of the least common divisor of 1, .., n 
(namely n!) .  

4 Obtaining a Total Order 
In this section, we show how the previous algorithms 
may be used w i t h o u t  a n y  additional communica- 
tion to obtain a total order between competing sites 
known by all the sites at the output of the algorithm. 
As previously, this order is totally unpredictable, and 
does not depend on the sites numbering. 
The principle is quite simple, the total order is ob- 
tained by iterating the election process. The first site 
in the order is the elected site (in the sense of the 
previous sections), after that this site is considered 
as passive by the other active sites and a new elec- 
tion (using the same exchanged messages) is per- 
formed to obtain the second site of the order, and so 
o n .  
More formally, we show how the set of exchanged mes- 
sages may be used to obtain a bijection, B ,  between 
Active,  the set of the active sites, and ( 1 , 2 , .  . ., n }  ( 
where n = Card(Active)). To conclude, it is sufficient 
to consider the canonical order associated wit.11 t.his 
bijection . 

) ) 

Lemma: 
For a bijection b : A H {1 ,2 ,  . . . , n } ,  the relation 
< b  C A x A defined by 
a; < b  nj iff b(a;) < b(a j )  is a strict total order on A 

Const ruc t ion  of a bijection 
Let B : { 1,2, . . . , n }  H Active defined as follows: 
B(1) = Si iff G(v1, 712, . . . , v,) = N-E( i )  
3.1.1) 

(cf section 

where ;he fk '(fd; 6 E (2, . . . , n } )  are defined as follows 

fk(vi)  = 0 iff vi = 0 or 3 p  < 
fk(v;)  = vi otherwise 

such that B ( p )  = i 

proof: 
Since Card(Active) = C a r d ( { l , 2 ,  ..., n} ,  it is suffi- 
cient to prove that B is an injection 
Let i # j (by example i < j )  and sk = B(i)  
by construction of B and f, 
For j such that IC < j 5 n 

w i t h  f j ( w t )  = 0 
As f j ( v k )  = 0, Sk may not be elected (cf section 3.2) 
and sp is necessary different of s k  
Then i # j 3 B(i)  # B ( j )  

Unpredic tab l i ty  of the obtained order: 
As in previous sections, the obtained order in unpre- 
dictable. The only way to cheat consists in waiting all 
the values exchanged by its partners to decide its own 
value. 

5 Conclusion 
This paper presents distributed algorithms for dis- 
tributed coin tossing among remote agents. An exten- 
sion allowing to obtain a total order on the competing 
sites has been also presented. 
The solutions arrived at feature symmetry as main 
characteristic. These algorithms fairly and equiprob- 
ably solve conflict occurring between remote sites: 
every competing site has the same chances of winning, 
every site is similarly involved in the final decision. 
Due to the specific aspect of the developed application: 
i.e., coin tossing, the level of symmetry of algorithms 
has been clearly assessed in terms of probability. A 
simple combinatorial calculus has shown that, what- 
ever the site, its probability to win is not dependent 
on its identifier, or on its local choices. 
In a normal case (in absence of cheating), the output 
of these algorithms is totally unpredictable. To be able 
to cheat, i.e., to predict the result of an election or to 
predict the total order associated with a consultation, 
a site needs to know all the values exchanged by its 
partners. 
The unpredictable aspect of the output is precious 
when considering the problem of fault tolerance : in a 
case where the elected site is always (often) the same, 
it may be the privileged target of external aggressions 
and even in the absence of external assault its load 
will be more important, increasing its probability of 
failure. 
In terms of complexity, the algorithms require (n  - 1)' 
messages for n sites: each site sends a message to its 
n - 1 partners, and waits for the respective acknowl- 
edgments. 
The proposed coin tossing mechanism may be used in 
many cases of distributed algorithms. I t  may be an 
alternative to other conflict resolution principles, e.g., 
static priority, timestamp messages [LAMP 781, ... 
An example of immediate application is furnished by 
mutual exclusion algorithms leader election or random 
choice among remote agents . 
The interest to determine a total order between com- 
peting sites is also obvious. It is important to note, 
that our approach allows each site (competing or not) 
to have a complete knowledge of the ordering. 
This common knowledge of the order is suffcient to 
determine classical hierarchies such as spanning trees 
but also more optimized structures such as balanced 
trees . 
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