The Community for Technology Leaders
2017 IEEE International Conference on Computer Vision Workshop (ICCVW) (2017)
Venice, Italy
Oct. 22, 2017 to Oct. 29, 2017
ISSN: 2473-9944
ISBN: 978-1-5386-1034-3
pp: 1629-1638
ABSTRACT
Recently, deep neural networks have demonstrated excellent performances in recognizing the age and gender on human face images. However, these models were applied in a black-box manner with no information provided about which facial features are actually used for prediction and how these features depend on image preprocessing, model initialization and architecture choice. We present a study investigating these different effects. In detail, our work compares four popular neural network architectures, studies the effect of pretraining, evaluates the robustness of the considered alignment preprocessings via cross-method test set swapping and intuitively visualizes the model's prediction strategies in given preprocessing conditions using the recent Layer-wise Relevance Propagation (LRP) algorithm. Our evaluations on the challenging Adience benchmark show that suitable parameter initialization leads to a holistic perception of the input, compensating artefactual data representations. With a combination of simple preprocessing steps, we reach state of the art performance in gender recognition.
INDEX TERMS
Face, Benchmark testing, Data models, Training, Predictive models, Neural networks, Brain modeling
CITATION

W. Samek, A. Binder, S. Lapuschkin and K. Muller, "Understanding and Comparing Deep Neural Networks for Age and Gender Classification," 2017 IEEE International Conference on Computer Vision Workshop (ICCVW), Venice, Italy, 2017, pp. 1629-1638.
doi:10.1109/ICCVW.2017.191
88 ms
(Ver 3.3 (11022016))