The Community for Technology Leaders
2017 IEEE International Conference on Computer Vision (ICCV) (2017)
Venice, Italy
Oct. 22, 2017 to Oct. 29, 2017
ISSN: 2380-7504
ISBN: 978-1-5386-1032-9
pp: 1771-1780
Robust and efficient image alignment remains a challenging task, due to the massiveness of images, great illumination variations between images, partial occlusion and corruption. To address these challenges, we propose an online image alignment method via subspace learning from image gradient orientations (IGO). The proposed method integrates the subspace learning, transformed IGO reconstruction and image alignment into a unified online framework, which is robust for aligning images with severe intensity distortions. Our method is motivated by principal component analysis (PCA) from gradient orientations provides more reliable low-dimensional subspace than that from pixel intensities. Instead of processing in the intensity domain like conventional methods, we seek alignment in the IGO domain such that the aligned IGO of the newly arrived image can be decomposed as the sum of a sparse error and a linear composition of the IGO-PCA basis learned from previously well-aligned ones. The optimization problem is accomplished by an iterative linearization that minimizes the L1-norm of the sparse error. Furthermore, the IGO-PCA basis is adaptively updated based on incremental thin singular value decomposition (SVD) which takes the shift of IGO mean into consideration. The efficacy of the proposed method is validated on extensive challenging datasets through image alignment and face recognition. Experimental results demonstrate that our algorithm provides more illumination- and occlusion-robust image alignment than state-of-the-art methods do.
face recognition, image registration, image representation, iterative methods, learning (artificial intelligence), optimisation, principal component analysis, singular value decomposition

Q. Zheng, Y. Wang and P. A. Heng, "Online Robust Image Alignment via Subspace Learning from Gradient Orientations," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2018, pp. 1771-1780.
182 ms
(Ver 3.3 (11022016))