The Community for Technology Leaders
Computer Vision, IEEE International Conference on (2013)
Sydney, Australia Australia
Dec. 1, 2013 to Dec. 8, 2013
ISSN: 1550-5499
pp: 3080-3087
ABSTRACT
We propose an adaptive sub gradient descent method to efficiently learn the parameters of CRF models for image parsing. To balance the learning efficiency and performance of the learned CRF models, the parameter learning is iteratively carried out by solving a convex optimization problem in each iteration, which integrates a proximal term to preserve the previously learned information and the large margin preference to distinguish bad labeling and the ground truth labeling. A solution of sub gradient descent updating form is derived for the convex optimization problem, with an adaptively determined updating step-size. Besides, to deal with partially labeled training data, we propose a new objective constraint modeling both the labeled and unlabeled parts in the partially labeled training data for the parameter learning of CRF models. The superior learning efficiency of the proposed method is verified by the experiment results on two public datasets. We also demonstrate the powerfulness of our method for handling partially labeled training data.
INDEX TERMS
Conditional Random Field, Image Parsing, Adaptive Subgradient Descent
CITATION

H. Zhang, J. Wang, P. Tan, J. Wang and L. Quan, "Learning CRFs for Image Parsing with Adaptive Subgradient Descent," 2013 IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 2013, pp. 3080-3087.
doi:10.1109/ICCV.2013.382
82 ms
(Ver 3.3 (11022016))