The Community for Technology Leaders
Computer Vision, IEEE International Conference on (2013)
Sydney, Australia Australia
Dec. 1, 2013 to Dec. 8, 2013
ISSN: 1550-5499
pp: 2264-2271
ABSTRACT
Sharing knowledge for multiple related machine learning tasks is an effective strategy to improve the generalization performance. In this paper, we investigate knowledge sharing across categories for action recognition in videos. The motivation is that many action categories are related, where common motion pattern are shared among them (e.g. diving and high jump share the jump motion). We propose a new multi-task learning method to learn latent tasks shared across categories, and reconstruct a classifier for each category from these latent tasks. Compared to previous methods, our approach has two advantages: (1) The learned latent tasks correspond to basic motion patterns instead of full actions, thus enhancing discrimination power of the classifiers. (2) Categories are selected to share information with a sparsity regularizer, avoiding falsely forcing all categories to share knowledge. Experimental results on multiple public data sets show that the proposed approach can effectively transfer knowledge between different action categories to improve the performance of conventional single task learning methods.
INDEX TERMS
Action Recognition, Latent Task
CITATION

Q. Zhou, G. Wang, K. Jia and Q. Zhao, "Learning to Share Latent Tasks for Action Recognition," 2013 IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 2013, pp. 2264-2271.
doi:10.1109/ICCV.2013.281
96 ms
(Ver 3.3 (11022016))