Welcome Message

Welcome to the 34th edition of the IEEE International Conference on Computer Design (ICCD) in Phoenix, AZ. ICCD encompasses a wide range of topics in the research, design, and implementation of computer systems and their components. Over the past 34 years, ICCD has been a forum where researchers from many disciplines within Electrical Engineering and Computer Science have met and discussed novel approaches to the design of entire computer systems.

ICCD 2016 received 276 regular papers in five core areas, namely, Computer Systems and Applications (CSA), Electronic Design Automation (EDA), Processor Architecture (PA), Logic and Circuit Design (LCD), and Test, Verification, and Security (TVS). An international program committee of 155 members diligently went through each submission and selected an outstanding list of papers for our program. ICCD 2016 program includes 77 oral presentations (28% acceptance rate), and 26 poster presentations. In addition, three special sessions on emerging and high interest topics and three tutorials complement the technical program.

ICCD 2016 presents three excellent keynote speakers. Ken Hansen, the CEO of Semiconductor Research Corporation will deliver the opening keynote. Keith Marzullo, the Dean of the College of Information Studies at the University of Maryland will deliver the Tuesday morning keynote, and Sankar Basu, CCF Program Director from US National Science Foundation will deliver the final keynote.

ICCD also features the social program, An Evening at the Desert Botanical Garden where attendees will be taken to the world famous Desert Botanical Garden for the dinner reception.

Sincerely,

ICCD 2016 Organizing, Program, and Steering Committees
Committees

Organizing Committee

General Chairs
Sule Ozev, Arizona State University, USA
Ramesh Karri, New York University, USA

Technical Program Chairs
Omer Khan, University of Connecticut, USA
Ozgur Sinanoglu, New York University Abu Dhabi, UAE

Special Session and Tutorial Chair
Christian Pilato, Columbia University, USA
Chengmo Yang, University of Delaware, USA

Finance Chair
Siddharth Garg, New York University, USA

Publication Chair
Jae-sun Seo, Arizona State University, USA

Registration Chair
Mingoo Seok, Columbia University, USA

Publicity Chairs
Yongpan Liu, Tsinghua University, China
Lars Bauer, Karlsruhe Institute of Technology, Germany

Web Chair
Ender Yilmaz, Freescale, USA

Local Arrangement Chairs
Umit Ogras, Arizona State University, USA

Steering Committee
Kee Sup Kim, Synopsys, USA (Chair)
Peter-Michael Seidel, University of Hawaii, USA
Sandip Kundu, University of Massachusetts, USA
Georgi Gaydadjiev, Chalmers University, Sweden
Program Committee

Computer Systems and Architecture Track

Co-Chairs
Umit Ogras, Arizona State University
Eren Kursun, Columbia University

Computer Systems and Architecture Track Program Committee
George Michelogiannakis, LBNL
Samantika Subramaniam, Intel Corporation
Madhu Mutyam, Indian Institute of Technology, Madras.
Jongsoo Park, Intel
Myoungsoo Jung, University of Texas at Dallas
Karthik Swaminathan, IBM
Perhaad Mistry, Northeastern University
Gokhan Memik, Northwestern University
Michel Kinsky, University of Oregon
Shuai Che, AMD
Hubertus Franke, IBM T.J. Watson Research Center
Paul Gratz, Texas A&M University
Anh Tran, Cavium Inc.
Ping Chi, University of California Santa Barbara
Houman Homayoun, George Mason University
Hyung Gyu Lee, Daegu University
Joonho Kong, Kyungpook National University
Takashi Nakada, University of Tokyo
Paul Bogdan, University of Southern California
Jun Yang, University of Pittsburgh
Rodrigo Dominguez, Qualcomm
Hiroshi Sasaki, Columbia University
Lide Duan, University of Texas at San Antonio
Hyunseok Lee, Arizona State University
Trevor Carlson, Uppsala University
Ann Gordon-Ross, University of Florida
Brian Kahne, NXP
Miroslav Velev, Aries Design Automation
Qiaosha Zhou, Huawei INC.
Christopher Fletcher, MIT
Antonia Zhai, University of Minnesota
Ulya Karpuzcu, University of Minnesota
Mahmut Kandemir, Penn State University
Timothy Sherwood, University of California, Santa Barbara
Ozcan Ozturk, Bilkent University
Chengmo Yang, University of Delaware
Avesta Sasan, Qualcomm
Mingoo Seok, Columbia University
Xiaochen Guo, Lehigh University
Lavanya Subramanian, Intel
Guangyu Sun, Peking University
Roberto Gioiosa, Pacific Northwest National Laboratory
Donghyuk Lee, NVIDIA
John Brunhaver, Arizona State University
Xavier Vera, Intel
Jaehyun Park, Arizona State University

Electronic Design Automation Track

Co-Chairs
Deming Chen, University of Illinois, Urbana-Champaign
Ibrahim Elfadel, Masdar Institute of Technology

Electronic Design Automation Track Program Committee
Jiang Xu, Hong Kong University of Science and Technology
Xiaoqian Yang, Synopsys Inc.
Li Shang, Univ. Colorado, Boulder
Enrico Macii, Politecnico di Torino
Shinji Kimura, Waseda University
Shiyan Hu, Michigan Technological University
Yiyu Shi, University of Notre Dame
Smail Niar, LAMIH, Univ. of Valenciennes, France
Saraju Mohanty, University of North Texas
Cristiana Bolchini, Politecnico di Milano
Qiang Xu, Chinese University of Hong Kong
Baris Taskin, Drexel University
Hiroyuki Tomiyama, Ritsumeikan University
Jose Monteiro, INESC-ID, IST ULisboa
Marisa Lopez-Vallejo, Universidad Politecnica Madrid
Taemin Kim, Intel Labs
Srinivas Katkoori, USF
Xin Li, Carnegie Mellon University
Peng Li, Texas A&M University
Victor Kravets, IBM
Haifeng Qian, IBM T. J. Watson Research Center
Yun Liang, Peking University
Shouyi Yin, Tsinghua University

Logic and Circuit Design Track

Co-Chairs
Chris Kim, University of Minnesota
Massimo Alioto, National University of Singapore
Logic and Circuit Design Track Program Committee
Henrik Eriksson, SP Technical Research Institute of Sweden
Himanshu Thapliyal, University of Kentucky
Zhengya Zhang, University of Michigan
Baker Mohammad, Khalifa University of Science Technology and Research
Amy Novak, Advanced Micro Devices
Pasquale Corsonello, University of Calabria - DEIS
Kenichi Agawa, Toshiba
Bart Zeydel, Applied Micro
Andreas Steininger, TU Wien
Mahmood Khayatzadeh, Oracle
Yajun Ha, I2R A*STAR
William Hung, Synopsys
Bo-Cheng Lai, National Chiao-Tung University, Taiwan
David Harris, Harvey Mudd College
Fabio Frustaci, University of Calabria - DEIS
Giuseppe Scotti, Sapienza University of Rome
Tim Tuan, Xilinx
Joachim Rodrigues, Lund University
Vasileios Pavlidis, University of Manchester

Processor Architecture Track
Co-Chairs
John Kim, Korea Advanced Institute of Science and Technology
Sangyeun Cho, Samsung

Processor Architecture Track Program Committee
Hao Wang, Samsung Austin R&D Center
Resit Sendag, University of Rhode Island
Yongjun Park, Hongik University
Jangwoo Kim, POSTECH
Jae W. Lee, SungKyungKwan University
Dmitry Ponomarev, SUNY Binghamton
Michihiro Koibuchi, National Institute of Informatics
Binzhang Fu, Chinese Academy of Sciences
Daniel Wong, University of California, Riverside
Syed Gilani, AMD
Karthick Rajamani, IBM Research
Nan Jiang, NVIDIA Research
Reetuparna Das, University of Michigan
Nikos Hardavellas, Northwestern University
H. Peter Hofstee, IBM
Socrates Demetriades, Oracle
HanjonKim, Samsung
Jiwu Shu, Tsinghua University
Test, Verification and Security Track

Co-Chairs
Michail Maniatakos, NYU Abu Dhabi
Jing-Jia Liou, National Tsing Hua University

Test, Verification and Security Track Program Committee
Hans-Joachim Wunderlich, University of Stuttgart
Arun Kanuparthi, Intel Corp.
Yi-Shing Chang, Intel Corp.
Xueyang Wang, Intel Corp.
Nicola Nicolici, McMaster University
Jeyavijayan Rajendran, University of Texas at Dallas
Yier Jin, University of Central Florida
Masahiro Fujita, University of Tokyo
Chen-Yong Cher, IBM Research
Chen-Mou Cheng, National Taiwan University
Nozomu Togawa, Waseda University
Ken Mai, Carnegie Mellon University
Xiaoqing Wen, Kyushu Institute of Technology
Rajat Subhra Chakraborty, IIT Kharagpur
Matteo Sonza Reorda, Politecnico di Torino
Marten van Dijk, University of Connecticut
Mark Tehranipoor, University of Florida
Jun Yuan, Cadence
Shih-Hao Hung, National Taiwan University
Dominik Stoffel, University of Kaiserslautern
Michael Hsiao, Virginia Tech
Dimitris Gizopoulos, University of Athens
Sandeep Shukla, IIT Kanpur
Jennifer Dworak, Southern Methodist University
Sying-Jyan Wang, National Chung Hsing University
Youngok Pino, ISI
Keynote Talks

Monday

A Research Agenda to Drive the Semiconductor Industry – SRC Taking the Lead
By Ken Hansen, CEO, Semiconductor Research Corporation

Abstract
The semiconductor industry compounded annual growth rate has dropped to 2.2% over the last five years. At the same time the phenomenon known as Moore’s Law that has been driven by dimensional scaling has also slowed. There is a need for transformative innovation to provide new silicon and software content to reinvigorate the growth in the industry. There are many market opportunities identified such as the Internet of Things where many have projected 50 billion connected devices by 2020, the continued electrification of the vehicle particularly in the ADAS and infotainment space with a goal to create an autonomous vehicle, the eHealth market for personalized, real-time diagnosis and treatment and the unbounded need for computational power to solve problems that we cannot even begin to attack today because of limited bandwidth. SRC in conjunction with SIA and NSF last year produced a report named “Rebooting the IT Revolution” which lays out a research agenda to begin the path towards the transformative innovation required to meet these market needs. This presentation will identify industry technical challenges, introduce the proposal for a combined public-private research agenda to remove the roadblocks that lie ahead, highlight some current SRC funded research supporting this initiative and identify SRC’s efforts to take the lead.

Biography

Ken Hansen joined Semiconductor Research Corporation as its President and CEO in June 2015. Ken brings his experience as the former Vice President and Chief Technology Officer with Freescale Semiconductor. Prior to becoming CTO at Freescale, Ken was Vice President and led Freescale’s Chief Development Office where he improved design efficiency and reduced product cost for all Freescale business units. Previously, he held several senior technology and management positions at Freescale and Motorola leading research and development teams. He received the BSEE and MSEE degrees from the University of Illinois where he also has been recognized as an ECE Distinguished Alumni, is a Fellow of the IEEE, and holds 11 U.S. patents. Ken is an industry veteran, with 40 years of experience in technical management and system/circuit design, primarily in the area of wireless communications.
Coordinating Federal R&D: The National Coordination Offices
By Keith Marzullo, Dean of the College of Information Studies at the University of Maryland

Abstract
Many find searching for federal funding is a daunting task, because research is done across many agencies - some intramural, and some extramural. Indeed, Congress finds keeping track of the R&D efforts so important that they have set up National Coordination Offices (NCOs) to do the tracking, and to foster cooperation and coordination. Knowing about these NCOs and the reports they publish is a good way for researchers to find partners as well. I'll describe one NCO - the one that supports Information and Communications Technology R&D and the one that I directed, as well as present the other offices and related programs.

Biography

Keith Marzullo is the incoming Dean of the College of Information Studies at the University of Maryland, College Park ("Maryland's iSchool"). Prior to this, he was the Director of the Federal Networking and Information Technology Research and Development (NITRD) National Coordination Office (NCO). He also served as the Co-chair of the NITRD Subcommittee of the National Science and Technology Council (NSTC) Committee on Technology (CoT), where he oversaw the operations and activities of the NITRD Program. The NCO reports to the Office of Science and Technology Policy (OSTP), Executive Office of the President. Dr. Marzullo joined NITRD NCO from the National Science Foundation (NSF), where he served as the Division Director for the Computer and Network Systems (CNS) Division in the Computer & Information Science & Engineering (CISE) Directorate. He also served as Co-Chair of the NITRD Cybersecurity and Cyber Physical Systems R&D Senior Steering Groups. Dr. Marzullo came to NSF from the University of California, San Diego’s Computer Science and Engineering Department, and served as the Department Chair from 2006-2010.
Wednesday

Nanotechnology Inspired Energy Efficient Computing – Perspective on a Grand Challenge

By Sankar Basu, Program Director, US National Science Foundation

Abstract

Several national initiatives, e.g., the nanotechnology initiative, the brain initiative, and the national strategic computing initiative have been appealed to for rescuing the computing research (and industry) from the impending crisis resulting from end of Moore’s law. To this end, the Office of Science and Technology Policy (OSTP) recently issued a grand challenge in computing which may possibly involve new kinds of beyond silicon devices and novel non von-Neumann computing architectures. While the nature and demands of computing in the future may be shifting away from traditional applications, much of the thinking behind this grand challenge draws inspiration from the fact that the human brain can perform amazingly complex tasks with orders of magnitude lower power consumption unmatched by present day computing machines. In this talk, we will critique this approach and discuss some potential solutions being pursued by several groups both in academia and government funding agencies.

Biography

Sankar Basu is a permanent Program Director at NSF/CISE Directorate and came to NSF from the IBM T. J. Watson Research Center in 2002. Early in his career he served on the faculty of Stevens Institute of Technology, and had a short stint at Naval Underwater Systems Center, CT as a visiting senior scientist. He was also at the Ruhr University, Bochum, Germany as an Alexander von Humboldt fellow, and the MIT Laboratory for Information and Decision Systems (LIDS) for extended periods. During 2012 he served as science advisor to the US Embassy in Berlin, Germany as a State Department Embassy Science Fellow.

His NSF program portfolio includes design automation of micro and nano systems. In the past he has also worked on circuits systems signal processing and statistical machine learning.

He is a Fellow of the IEEE (2001), a Fellow of the AAAS (2010), and recipient of an SRC award (2011) for Enhancing the Mission of SRC and NSF through Collaboration.
Tutorials

Sunday

1. **Design Automation for 3D Chip Stacks: Challenges and Solutions**
 By Johann Knechtel and Ibrahim (Abe) M. Elfadel, Masdar Institute of Science and Technology, UAE

2. **Performance, Power and Energy-Efficiency Insightful Modeling of Multi-Cores**
 by Leonel Sousa, Universidade de Lisboa, Portugal

3. **Security Assurance in SoCs**
 by Arun Kanuparthi and Hareesh Khattri, Intel Corporation, USA
Table of Contents

Fast Register Consolidation and Migration for Heterogeneous Multi-core Processors .. 1
Elliott Forbes and Eric Rotenberg

An Adaptive Non-uniform Loop Tiling for DMA-Based Bulk Data Transfers on Many-Core Processor ... 9
Keni Qiu, Yuanhui Ni, Weigong Zhang, Jing Wang, Xiaoliang Wu, Chun Jason Xue and Tao Li

Enabling Technologies for Memory Compression: Metadata, Mapping, and Prediction .. 17
Arjun Deb, Ali Shafiee, Rajeev Balasubramonian, Paolo Faraboschi, Naveen Muralimanohar and Robert Schreiber

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation ... 25
Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose and Onur Mutlu

Scalable Memory Fabric for Silicon Interposer-Based Multi-Core Systems .. 33
Irir Akgun, Jia Zhan, Yuanhang Wang and Yuan Xie

BEOL Stack-Sensitive Routability Prediction From Placement Using Data Mining Techniques 41
Wei-Ting J. Chan, Yang Du, Andrew B. Kahng, Siddhartha Nath and Kambiz Samadi

Process Variations-Aware Resistive Associative Processor Design ... 49
Hasan Erdem Yantir, Mohammed E. Fouda, Ahmed M. Eltawil and Fadi J. Kurdahi

Extending On-Chip Interconnects for Rack-Level Remote Resource Access ... 56
Yisong Chang, Ke Zhang, Sally A. McKee, Lixin Zhang, Mingyu Chen, Liqiang Ren and Zhiwei Xu

HS-BAS: a Hybrid Storage System Based on Band Awareness of Shingled Write Disk 64
Wenjian Xiao, Huanqing Dong, Liuying Ma, Zhenjun Liu and Qiang Zhang

BDR: A Balanced Data Redistribution Scheme to Accelerate the Scaling Process of XOR-based Triple Disk Failure Tolerant Arrays ... 72
Yanbing Jiang, Chentao Wu, Jie Li and Minyi Guo

Using Provenance to Boost the Metadata Prefetching in Distributed Storage Systems 80
Guojin Wu, Yuhui Deng and Xiao Qin

Isolation-based Decorrelation of Stochastic Circuits ... 88
Pai-Shun Ting and John Hayes

A Novel Approximate Synthesis Flow for the Energy-Efficient FIR filter .. 96
Yesung Kang, Jaewoo Kim and Seokhyeong Kang

Synthesis Design Strategies for Energy-Efficient Microprocessors .. 103
Ching Zhou, Yu-Shiang Lin, Pong-Fei Lu, Bruce Fleischer, David Frank and Leland Chang

Implementing Low Power Digital Circuits using Flash Devices ... 109
Monther Abusultan and Sunil Khatri
Data Placement Across the Cache Hierarchy: Minimizing Data Movement with Reuse-Aware Placement .. 117
Andreas Sembant, Erik Hagersten and David Black-Schaffer

Dynamic Prefetcher Reconfiguration for Diverse Memory Architectures .. 125
Junghoon Lee, Taehoon Kim and Jaehyuk Huh

Ctrl-C: Instruction-Aware Control Loop Based Adaptive Cache Bypassing for GPUs 133
Shin-Ying Lee and Carole-Jean Wu

A Strong Arbiter PUF using Resistive RAM within 1T-1R Memory Architecture 141
Rekha Govindaraj and Swaroop Ghosh

Voting System Design Pitfalls: Vulnerability Analysis and Exploitation of a Model Platform 149
Kelvin Ly, Orlando Arias, Jacob Wurm, Khoa Hoang, Kaveh Shamsi and Yier Jin

Hardware-Based Attacks to Compromise the Cryptographic Security of an Election System 153
Mohammad-Mahdi Bidmeshki, Gaurav Rajavendra Reddy, Liwei Zhou, Jeyavijayan Rajendran and Yiorgos Makris

Cryptographic Vote-Stealing Attacks Against a Partially Homomorphic E-voting Architecture 157
Nektarios Georgios Tsoutsos and Michail Maniatisatos

Algorithms for CPU and DRAM DVFS Under Inefficiency Constraint .. 158
Rizwana Begum, Mark Hempstead, Guru Prasad Srinivasa and Geoffrey Challen

Frame-based and Thread-based Power Management for Mobile Games on HMP Platforms 166
Nadja Peters, Sangyoung Park, Dominik Fiﬁ and Samarjit Chakraborty

nOS: a scalable distributed operating system with run-time resource optimisation for many-core systems 174
Simon Hollis, Edward Ma and Radu Marculescu

WILD: A Workload-Based Learning Model to Predict Dynamic Delay of Functional Units 182
Xun Jiao, Yu Jiang, Abbas Rahimi and Rajesh Gupta

A Novel Simulation Based Approach for Trace Signal Selection in Silicon Debug 190
Prabanjan Komari and Ranga Vemuri

Venkata Yaswanth Raparti, Nishit Kapadia and Sudeep Pasricha

Refresh-Aware Loop Scheduling for High Performance Low Power Volatile STT-RAM 206
Keni Qiu, Junpeng Luo, Zhiyao Gong, Weigong Zhang, Jing Wang, Yuanchao Xu, Tao Li and Chun Jason Xue

Understanding and Alleviating Intra-Die and Intra-DIMM Parameter Variation in the Memory System 214
Meysam Taassori, Ali Shafiee and Rajeev Balasubramonian
TESLA: Using Microfluidics to Thermally Stabilize 3D Stacked STT-RAM Caches ... 341
Majed Valad Beigi and Gokhan Memik

Dynamic Single and Dual Rail Spin Transfer Torque Look Up Tables with Enhanced Robustness under CMOS and MTJ Process Variations .. 345
Aliyar Attaran, Hassan Salmani, Houman Homayoun and Hamid Mahmooodi

DOART: A Low-Power and Low-Latency Network-on-Chip .. 349
Wen Zong and Qiang Xu

Error Behaviors Testing With Temperature And Magnetism Dependency For MRAM 353
Xin Shi, Fei Wu, Xidong Guan and Changsheng Xie

AIBA: an Automated Intra-Cycle Behavioral Analysis for SystemC-based Design Exploration 357
Mehran Goli, Jannis Stoppe and Rolf Drechsler

A Fast, Fully Verifiable, and Hardware Predictable ASIC Design Methodology 361
Ping-Lin Yang and Malgorzata Marek-Sadowska

Memos: A Full Stack Hybrid Memory Management Framework ... 365
Lei Liu, Hao Yang, Yong Li, Mengyao Xie, Lian Li and Chenggang Wu

Relinquishment Coherence for Enhancing Directory Efficiency in Chip Multiprocessors 369
Wei Shu and Nian-Feng Tseng

Hippogriff: Efficiently Moving Data in Heterogeneous Computing Systems .. 373
Yang Liu, Hung-Wei Tseng, Mark Gahagan, Jing Li, Yanqin Jin and Steven Swanson

Kyu Yeun Kim, Jinsu Park and Woongki Baek

SPMario: Scale Up MapReduce with I/O-Oriented Scheduling for the GPU ... 381
Yang Liu, Hung-Wei Tseng and Steven Swanson

"Stubborn" Strategy to Mitigate Remaining Cache Misses .. 385
Hayato Nomura, Hiroyuki Katchi, Hidetsugu Irie and Shuichi Sakai

A New Coding Scheme for Fault Tolerant 4-Phase Delay-Insensitive Codes ... 389
Florian Huemer, Jakob Lechner and Andreas Steininger

Scalable Memory Architecture for Soft-core Processors .. 393
Tiago T. Jost, Gabriel L. Nazar and Luigi Carro

Wireless Network-on-Chip Analysis of Propagation Technique for On-chip Communication 397
Vasil Pano, Isikcan Yilmaz, Yuqiao Liu, Baris Taskin and Kapil Dandekar

Quantifying the Difference in Resource Demand among Classic and Modern NoC Workloads 409
Amirhossein Mirhosseini, Mohammad Sadrosadati, Maryam Zarre and Hamid Sarbazi-Azad
Machine Learning Classifiers using Stochastic Logic ... 405
Yin Liu, Hariharasudhan Venkataraman, Zisheng Zhang and Keshab Parhi

A Novel Hardware Hash Unit Design for Modern Microprocessors .. 409
Abbas Fairouz, Monther Abusultan and Sunil Khatri

Exploring Static and Dynamic Flash-based FPGA Design Topologies 413
Monther Abusultan and Sunil Khatri

Concurrent Migration of Multiple Pages in Software-Managed Hybrid Main Memory 417
Santiago Bock, Bruce Childers, Rami Melhem and Daniel Mosse

How Logic Masking Can Improve Path Delay Analysis for Hardware Trojan Detection 421
Arash Nejat, David Hely and Vincent Beroulle

Ramin Fallahzadeh and Hassan Ghasemzadeh

Parallelizing Latent Semantic Indexing Using an FPGA-based Architecture 429
Xinying Wang and Joseph Zambreno

CloudSocket: Smart Grid Platform for Datacenters ... 433
Seil Lee, Hanjoo Kim, Seongsik Park, Sei Joon Kim, Hyeokjun Choe, Chang-Sung Jeong and Sungroh Yoon

Shuffling Across Rounds: A Lightweight Strategy to Counter Side-channel Attacks 437
Sikhar Patranabis, Debapriya Basu Roy, Praveen Kumar Vadnala, Debdip Mukhopadhyay and Santosh Ghosh

CCSA: Contention and Congestion aware Switch Allocation for Network-on-Chips 441
Cunlu Li, Dezun Dong, Xiangke Liao, Fei Lei and Ji Wu

SRAM Memory Margin Probability Failure Estimation using Gaussian Process Regression 445
Manish Rana, Ramon Canal, Jie Han and Bruce Cockburn

Towards a Timing Attack Aware High-level Synthesis of Integrated Circuits 449
Steffen Peter and Tony Givargis

A Model for Application Slowdown Estimation in On-Chip Networks and Its Use for Improving System Fairness and Performance ... 453
Xiuye Xiang, Saugata Ghose, Onur Mutlu and Nian-Feng Tzeng

Pull-Off Buffer: Borrowing Cache Space to Avoid Deadlock for Fault-Tolerant NoC Routing ... 461
Airan Shao, Dongsheng Wang and Haixia Wang

A Heterogeneous Low-Cost and Low-Latency Ring-Chain Network for GPGPUs 469
Xia Zhao, Sheng Ma, Chen Li, Lieven Eeckhout and Zhiying Wang
Energy Aware Routing of Multi-Level Network-on-Chip Traffic ... 477
Vasil Pano, Isikcan Yilmaz, Ankit More and Baris Taskin

A Single-Inductor-Cascaded-Stage Topology for High Conversion Ratio Boost Regulator....................... 484
Khondker Ahmed and Saibal Mukhopadhyay

Data-Pattern Enabled Self-Recovery Multimedia Storage System for Near-Threshold Computing 489
Na Gong, Jonathon Edstrom, Dongliang Chen and Jinhui Wang

A 64 kb Differential Single-Port 12T SRAM Design With a Bit-Interleaving Scheme for Low-Voltage Operation in 32 nm SOI CMOS ... 496
Samira Ataei, James Stine and Matthew Guthaus

A statistical critical path monitor in 14nm CMOS .. 504
Bruce Fleischer, Karthik Balakrishnan, Christos Vezyrtzis and Keith A. Jenkins

ONAC: Optimal Number of Active Cores Detector for Energy Efficient GPU Computing 509
Xian Zhu, Mihir Awatramani, Diane Rover and Joseph Zambreno

Thermal-aware 3D Design for Side-channel Information Leakage... 517
Peng Gu, Dylan Stow, Russell Barnes, Eren Kursun and Yuan Xie

Improving Performance per Watt of Non-Monotonic Multicore Processors via Bottleneck based Online Program Phase Classification .. 525
Sudarshan Srinivasan, Israel Koren and Sandip Kundu

BADGR: A Practical GHR Implementation for TAGE Branch Predictors .. 533
David J. Schlais and Mikko H. Lipasti

Unveiling Difficult Bugs in Address Translation Caching Arrays for Effective Post-Silicon Validation .. 541
George Papadimitriou, Dimitris Gizopoulos, Athanasios Chatzidimitriou, Tom Kolan, Anatoly Koyfman, Romy Morad and Vitali Sokhin

Chain-Based Pseudorandom Tests for Pre-Silicon Verification of CMP Memory Systems 549
Gabriel Arthur Gerber Andrade, Marleson Graf and Luiz C. V. Dos Santos

A Novel Approach to Parameterized verification of Cache Coherence Protocols 557
Yongjian Li, Kaiqiang Duan, Yi Lv, Jun Pang and Shaowei Cai

A Readback Based General Debugging Framework for Soft-Core Processors .. 565
Changgong Li, Alexander Schwarz and Christian Hochberger

MFAP: Fair Allocation Between Fully Backlogged and Non-Fully Backlogged Applications 573
Yan Sui, Chun Yang, Dong Tong, Xianhua Liu and Xu Cheng

Strategies for Optimal Operating Point Selection in Timing Speculative Processors 581
Omid Assare and Rajesh Gupta

Efficient Mode Changes in Multi-Mode Systems ... 589
Akramul Azim and Sebastian Fischmeister
FPGA Trust Zone: Incorporating Trust and Reliability into FPGA designs ..597
Vinayaka Jyothi, Manasa Thoonoli, Richard Stern and Ramesh Karri

Guided Lightweight Software Test Qualification for IP Integration using Virtual Prototypes603
Daniel Grosse, Hoang M. Le, Muhammad Hassan and Rolf Drechsler

MASkIt: Soft Error Rate Estimation for Combinational Circuits ...611
Martí Anglada, Ramon Canal, Juan Luis Aragón and Antonio González

Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors619
Jack Wadden, Nathan Brunelle, Ke Wang, Mohamed El-Hadesy, Gabriel Robins, Mircea Stan and Kevin Skadron

Speculative path power estimation using trace-driven simulations during high level design phase627
Saumya Chandra and Ramkumar Jayaseelan

x86 Computer Architecture Simulators: A Comparative Study ..635
Ayaz Akram and Lina Sawalha

DLL: A Dynamic Latency-Aware Load-Balancing Strategy in 2.5D NoC Architecture643
Chen Li, Sheng Ma, Lu Wang, Zicong Wang, Xia Zhao and Yang Guo

A Modular Architectural Model of Parametric Variability for Emerging Switches651
S. Karen Khatamifard, Michael Resch, Nam Sung Kim and Ulya Karpuzcu

CNFET-Based High Throughput Register File Architecture ...659
Tianjian Li, Li Jiang, Naifeng Jing, Nam Sung Kim and Xiaoyao Liang

Stochastic Neuromorphic Learning Machines for Weakly Labeled Data ...667
Emre Neftci

Design Techniques of eNVM-enabled Neuromorphic Computing Systems ...671
Chang Song, Beiye Liu, Chenchen Liu, Hai Li and Yiran Chen

DSCNN: Hardware-Oriented Optimization for Stochastic Computing Based Deep Convolutional Neural Networks ...675
Zhe Li, Ao Ren, Ji Li, Qinru Qiu, Yanzhi Wang and Bo Yuan

Ultra-low Energy Security Circuits for IoT Applications ..679
Sudhir Satpathy, Sanu Mathew, Vikram Suresh and Ram Krishnamurthy

What does ultra low power requirements mean for side-channel secure cryptography?683
Monodeep Kar, Arvind Singh, Anand Rajan, Vivek De and Saibal Mukhopadhyay

The Power Play: Security-Energy Trade-offs in the IoT Regime ...687
Sandip Ray, Tamzidul Hoque, Abhishek Basak and Swarup Bhunia
Author Index

Abusultan, Monther 109, 409, 413
Aghaaliakbari, Fatemeh 333
Ahmed, Khondker 484
Ahn, Jung Ho 293
Akgun, Itir 33
Akram, Ayaz 635
Anglada, Mart’i 611
Arag’on, Juan Luis 611
Arias, Orlando 149
Arjomand, Mohammad 333
Assare, Omid 581
Ataei, Samira 496
Attaran, Aliyar 345
Awatramani, Mihir 509
Azim, Akramul 589

Baek, Woongki 377
Balakrishnan, Karthik 504
Balasubramonian, Rajeev 17, 214
Barnes, Russell 517
Basak, Abhishek 687
Basu Roy, Debapriya 437
Begum, Rizwana 158
Berouille, Vincent 421
Bhattacharya, Bhargab 270
Bhunia, Swarup 687
Bidmeshki, Mohammad-Mahdi 153
Black-Schaffer, David 117
Bock, Santiago 417
Bogdan, Paul 238
Boroumand, Amirali 25
Brunelle, Nathan 619

C. V. Dos Santos, Luiz 549
Cai, Shaowei 557
Canal, Ramon 445, 611
Carro, Luigi 393
Chakraborty, Samarjit 166
Challen, Geoffrey 158
Chan, Wei-Ting J. 41
Chandra, Saumya 627
Chang, Kevin K. 25
Chang, Leland 103
Chang, Naehyuck 278
Chang, Yisong 56
Chatzidimitriou, Athanasios 541
Chen, Chang-Chih 222
Chen, Dongliang 489
Chen, Mingyu 56
Chen, Yiran 671
Cheng, Xu 573
Childers, Bruce 417
Choe, Hyeokjun 433
Cockburn, Bruce 445

Dandekar, Kapil 397
De, Vivek 683
Deb, Arjun 17
Deng, Yuhui 80
Ding, Caiwen 278, 286
Dong, Dezun 441
Dong, Huanqing 64
Drechsler, Rolf 357, 603
Du, Yang 41
Duan, Kaiqiang 557

Ebrahimi, Elnaz 230
Edstrom, Jonathon 489
Eeckhout, Lieven 469
El-Hadedy, Mohamed 619
Eltawil, Ahmed M. 49

Fairouz, Abbas 409
Fallahzadeh, Ramin 425
Faraboschi, Paolo 17
Fischmeister, Sebastion 589
Fleischer, Bruce 103, 504
Forbes, Elliott 1
Fouda, Mohammed E. 49
Frank, David 103
Fu’ß, Dominik 166

Gahagan, Mark 373
Garg, Siddharth 238
Gerber Andrade, Gabriel Arthur 549
Ghasemzadeh, Hassan 425
Ghose, Saugata 25, 453
Ghosh, Santosh 437
Ghosh, Swaroop 141
Givargis, Tony 449
Gizopoulos, Dimitris 541
Goli, Mehran 357
Li, Jing 373
Li, Lian 365
Li, Tao 9, 206
Li, Tianjian 659
Li, Yong 365
Li, Yongjian 557
Li, Zhe 675
Liang, Xiaoyao 659
Liao, Xiangke 441
Lin, Xue 238, 278
Lin, Yu-Shiang 103
Lipasti, Mikko H. 533
Liu, Beiye 671
Liu, Chencen 671
Liu, Lei 365
Liu, Taizhi 222
Liu, Xianhua 573
Liu, Yang 373, 381
Liu, Yin 405
Liu, Yongpan 286
Liu, Yuqiao 397
Liu, Zhenjun 64
Lu, Pong-Fei 103
Luo, Junpeng 206
Lv, Yi 557
Ly, Kelvin 149
Ma, Edward 174
Ma, Liuying 64
Ma, Sheng 469, 643
Mahmoodi, Hamid 345
Makis, Yiorgos 153
Maniatakos, Michail 157
Marculescu, Radu 174
Marek-Sadowska, Malgorzata 361
Mathew, Sanu 679
McKee, Sally A. 56
Melhem, Rami 417
Memik, Gokhan 341
Milenkovic, Aleksandar 309
Milor, Linda 222
Mirhosseini, Amirhossein 401
Momeni, Amir 254
Morad, Ronny 541
More, Ankit 477
Mosse, Daniel 417
Mukhopadhyay, Debdeep 437
Salmani, Hassan 345
Samadi, Kambiz 41
Sarbazi-Azad, Hamid 301, 333, 401
Satpathy, Sudhir 679
Sawalha, Lina 635
Schirmer, Gunar 254
Schlais, David J. 533
Schreiber, Robert 17
Schwarz, Alexander 565
Sembrant, Andreas 117
Shafiee, Ali 17, 214
Shamsi, Kaveh 149
Shao, Airan 461
Shi, Xin 353
Shu, Wei 369
Singh, Arvind 683
Skadron, Kevin 325, 619
Skinner, Haven 230
Sokhin, Vitali 541
Song, Chang 671
Srinivasa, Guru Prasad 158
Srinivasan, Sudarshan 525
Stan, Mircea 619
Steininger, Andreas 389
Stern, Richard 597
Stine, James 496
Stoppe, Jannis 357
Stow, Dylan 517
Sui, Yan 573
Sung Kim, Nam 651
Suresh, Vikram 679
Swanson, Steven 373, 381

Taassori, Meysam 214
Tabkhi, Hamed 254
Tariq, Umair Ullah 262
Taskin, Baris 397, 477
Thoonoli, Manasa 597
Ting, Pai-Shun 88
Tong, Dong 573
Trapani Possignolo, Rafael 230
Tseng, Hung-Wei 373, 381
Tsoutsos, Nektarios Georgios 157
Tzeng, Nian-Feng 369, 453

Vadnala, Praveen Kumar 437
Valad Beigi, Majed 341
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vemuri, Ranga</td>
<td>190</td>
</tr>
<tr>
<td>Venkataraman, Harihasudhan</td>
<td>405</td>
</tr>
<tr>
<td>Vezyrtzis, Christos</td>
<td>504</td>
</tr>
<tr>
<td>Vijaykumar, Nandita</td>
<td>25</td>
</tr>
<tr>
<td>Wadden, Jack</td>
<td>619</td>
</tr>
<tr>
<td>Wang, Dongsheng</td>
<td>461</td>
</tr>
<tr>
<td>Wang, Haixia</td>
<td>461</td>
</tr>
<tr>
<td>Wang, Jing</td>
<td>9, 206</td>
</tr>
<tr>
<td>Wang, Jinhui</td>
<td>489</td>
</tr>
<tr>
<td>Wang, Ke</td>
<td>619</td>
</tr>
<tr>
<td>Wang, Liang</td>
<td>325</td>
</tr>
<tr>
<td>Wang, Lu</td>
<td>643</td>
</tr>
<tr>
<td>Wang, Shihao</td>
<td>317</td>
</tr>
<tr>
<td>Wang, Xinying</td>
<td>429</td>
</tr>
<tr>
<td>Wang, Yanzhi</td>
<td>238, 278, 286, 675</td>
</tr>
<tr>
<td>Wang, Yuangang</td>
<td>33</td>
</tr>
<tr>
<td>Wang, Zhiying</td>
<td>469</td>
</tr>
<tr>
<td>Wang, Zicong</td>
<td>643</td>
</tr>
<tr>
<td>Wu, Carole-Jean</td>
<td>133</td>
</tr>
<tr>
<td>Wu, Chenggang</td>
<td>365</td>
</tr>
<tr>
<td>Wu, Chentao</td>
<td>72</td>
</tr>
<tr>
<td>Wu, Fei</td>
<td>353</td>
</tr>
<tr>
<td>Wu, Guojin</td>
<td>80</td>
</tr>
<tr>
<td>Wu, Hui</td>
<td>262</td>
</tr>
<tr>
<td>Wu, Ji</td>
<td>441</td>
</tr>
<tr>
<td>Wu, Jiadong</td>
<td>222</td>
</tr>
<tr>
<td>Wu, Xiaqiang</td>
<td>9</td>
</tr>
<tr>
<td>Wurm, Jacob</td>
<td>149</td>
</tr>
<tr>
<td>Xiang, Xiyue</td>
<td>453</td>
</tr>
<tr>
<td>Xiao, Wenjian</td>
<td>64</td>
</tr>
<tr>
<td>Xie, Changsheng</td>
<td>353</td>
</tr>
<tr>
<td>Xie, Mengyao</td>
<td>365</td>
</tr>
<tr>
<td>Xie, Yuan</td>
<td>33, 517</td>
</tr>
<tr>
<td>Xu, Qiang</td>
<td>349</td>
</tr>
<tr>
<td>Xu, Yuanchao</td>
<td>206</td>
</tr>
<tr>
<td>Xu, Zhiwei</td>
<td>56</td>
</tr>
<tr>
<td>Xue, Chun Jason</td>
<td>9, 206</td>
</tr>
<tr>
<td>Xue, Yuankun</td>
<td>238</td>
</tr>
<tr>
<td>Yang, Chun</td>
<td>573</td>
</tr>
<tr>
<td>Yang, Hao</td>
<td>365</td>
</tr>
<tr>
<td>Yang, Ping-Lin</td>
<td>361</td>
</tr>
<tr>
<td>Yantir, Hasan Erdem</td>
<td>49</td>
</tr>
<tr>
<td>Yilmaz, Isikcan</td>
<td>397, 477</td>
</tr>
<tr>
<td>Yoon, Sungroh</td>
<td>433</td>
</tr>
</tbody>
</table>
Yuan, Bo 675

Zambreno, Joseph 429, 509
Zarre, Maryam 401
Zhan, Jia 33
Zhang, Ke 56
Zhang, Lixin 56
Zhang, Qiang 64
Zhang, Weigong 9, 206
Zhang, Zisheng 405
Zhao, Xia 469, 643
Zheng, Weiwei 278
Zhou, Ching 103
Zhou, Dajiang 317
Zhou, Huiyang 246
Zhou, Liwei 153
Zhu, Xian 509
Zong, Wen 349