The Community for Technology Leaders
2013 IEEE 3rd International Conference on Computational Advances in Bio and medical Sciences (ICCABS) (2012)
Las Vegas, NV, USA
Feb. 23, 2012 to Feb. 25, 2012
ISBN: 978-1-4673-1320-9
pp: 1-6
Danny Krizanc , Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut, USA
Frederick M. Cohan , Department of Biology, Wesleyan University, Middletown, Connecticut, USA
Juan Carlos Francisco , Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut, USA
ABSTRACT
Identification of closely related, ecologically distinct populations of bacteria would benefit microbiologists working in many fields including systematics, epidemiology, and biotechnology. Several laboratories have recently developed algorithms aimed at demarcating such "ecotypes." In this paper we examine the ability of four of these algorithms to correctly identify ecotypes from sequence data (along with, in the case of one algorithm, information on the habitats where organisms were isolated). We test the algorithms on synthetic sequences, with known history and habitat associations, generated under the Stable Ecotype model [1], and on data from Bacillus strains isolated from Death Valley where previous work [2] has confirmed the existence of multiple ecotypes. We find that one of the algorithms (Ecotype Simulation) performs significantly better than the others (AdaptML, GMYC, BAPS) in both instances. Unfortunately, it is also shown to be the least efficient of the four.
INDEX TERMS
CITATION
Danny Krizanc, Frederick M. Cohan, Juan Carlos Francisco, "Demarcation of bacterial ecotypes from DNA sequence data: A comparative analysis of four algorithms", 2013 IEEE 3rd International Conference on Computational Advances in Bio and medical Sciences (ICCABS), vol. 00, no. , pp. 1-6, 2012, doi:10.1109/ICCABS.2012.6182633
191 ms
(Ver 3.3 (11022016))