The Community for Technology Leaders
Information Assurance and Security, International Symposium on (2009)
Xi'An China
Aug. 18, 2009 to Aug. 20, 2009
ISBN: 978-0-7695-3744-3
pp: 215-218
ABSTRACT
In this paper, a infrared face recognition method using radiant energy conversion and Curvelet transformation is proposed. Firstly, to get the stable feature of thermal face, thermal images are converted into radiant energy images according to Stefan-Boltzmann's law. Secondly, Curvelet transform has better directional and edge representation abilities than widely used wavelet transformation and other classic transformations. Inspired by these attractive attributes of Curvelets in sparse representation of the images, we introduce the idea of decomposing images into their curvelet subbands to extract the principal representative feature, which saves the computational complexity and storage units. Finally, the nearest neighbor classifier is chosen to get the system recognition result. The experiments illustrate that compared with traditional PCA based systems, the proposed system has better performance and requires fewer computations and memory units.
INDEX TERMS
infrared face recognition; radiant energy; curvelet transformation; sparse representation
CITATION

Z. Xie, Z. Fang, S. Wu and G. Liu, "Infrared Face Recognition Based on Radiant Energy and Curvelet Transformation," Information Assurance and Security, International Symposium on(IAS), Xi'An China, 2009, pp. 215-218.
doi:10.1109/IAS.2009.24
92 ms
(Ver 3.3 (11022016))