From E-Shopping System Quality to the Consumer’s Intention to Return: A Meta-Analytic Study of the Mediation of Attitude, Usefulness, Enjoyment, and Trust

John Ingham
Faculté d’administration
Université de Sherbrooke
John.Ingham@USherbrooke.ca

Jean Cadieux
Faculté d’administration
Université de Sherbrooke
Jean.Cadieux@USherbrooke.ca

Abstract

This research aims at clarifying the respective role of e-shopping system quality and attitude, usefulness, enjoyment, and trust to explain the consumer’s intention to return to an online merchant. A meta-analytical regression based on 83 published studies is used to integrate, in one single model, concepts from two streams of information system (IS) research which are the technology acceptance model (TAM) and the IS success model. Results demonstrate that the sequence, consisting of e-shopping system quality (system quality, information quality, and customer service quality) – behavioral beliefs and attitude – intention to return, is theoretically and empirically founded and that customer service quality is the quality dimension that influences trust and enjoyment the most while information quality is the quality dimension that is the most influential on usefulness.

1. Introduction

One of the main challenges faced by online merchants is to maintain consumers’ interest and get them to reuse their apps, revisit their e-shopping system and ultimately repurchase their products. Online sale systems designers and marketing staff invest a lot of effort to implement high quality solutions at the technical, informational, and customer service levels, but the performance of these investments, in terms of repeated purchase, requires: 1) that consumers find their shopping experience useful and enjoyable, and 2) that they trust and have a positive attitude towards shopping on the web site of a particular merchant. The purpose of this research is to find support for these two statements by comparing and theoretically integrating two streams of academic work which have been used by information systems researchers to explain consumers’ online behavior, namely the extensions to online shopping of Davis’s technology acceptance model (TAM) [1,2] and of DeLone and McLean’s IS success model for e-commerce [3,4]. The originality of this research is twofold. First, to the best of our knowledge, no other published study has used the method of meta-analysis to integrate those two approaches. Second, it provides a theoretically and empirically well founded base for new research on more distal precursors of consumers’ return intention, grounding future research on more concrete issues for practitioners such as, for example, usability testing, service practices best suited for online consumers or marketing actions to strengthen the consumers’ beliefs and attitude about continuing to deal online with a business.

2. Background

It is useful to recall here that the TAM model and the IS success model originally pursued two very different objectives. While the TAM was intended to be a predictive model of a new information technology acceptance, the IS success model was primarily an evaluative model of an IS. Nevertheless, both models have been adapted to explain consumers’ behavior with respect to their repeated usage of an IT and, to do so, have been modified and extended by the inclusion of additional variables. For the present meta-analytic research, we have selected, from a set of 155 studies which used the TAM or the IS success model as their reference model to study e-shopping, 831 studies dedicated to the return intention of experienced e-shoppers. Of those remaining 83 studies, 62 (75%) are based on TAM constructs, 10 on IS success constructs and 11 on a mix of TAM and IS success constructs.

1 Due to the lack of space, references included in the meta-analysis are not presented here but can be obtained from the first author.
2.1. Extended TAM model for e-shopping

TAM posits that information technology usage is determined by the behavioral intention to use it, which, in turn, is explained by the attitude towards usage and perceived usefulness; attitude is conjointly formed by the beliefs of usefulness and ease of use. All other possible antecedents of intention to use, such as the technology properties or the individual or organization properties, are all supposed to be fully mediated by beliefs.

TAM model adaptations have been made to study e-shopping acceptance by adding one or more variables to the original model. In a meta-analysis of 109 studies pertaining to TAM for e-shopping, Ingham and al. [2] find that enjoyment, risk, trust, and social influence are the additional variables most often studied and that, along with attitude towards e-shopping and perceived usefulness, they directly contribute to the explanation of behavioral intention. Attitude towards e-shopping is formed by usefulness, enjoyment, risk, and ease of use.

In the present research, 62 of the 83 studies are from a pure TAM tradition in the sense that they include the constructs of perceived usefulness, perceived ease of use, and at least one of the following dependant constructs, namely attitude, intention and/or usage and do not include constructs from the e-commerce success model.

2.2. E-Commerce Success model

In 2003, DeLone and McLean updated their well-known IS success model [5] and in 2004, they proposed its adaptation to the domain of e-commerce. In the 2004 model ([3], p. 33), system quality (including customization, ease of navigation, privacy, and security), information quality (including dynamic content, content personalization and variety of information), and service quality (including responsiveness, empathy, and on-line support capabilities) separately and conjointly affect the consumer’s satisfaction, intention, and use which ultimately affect net benefits for the e-merchant. Ten of our 83 studies are from a pure DeLone and McLean tradition: they all include at least the concepts of system quality, information quality, and user satisfaction and do not include usefulness, ease of use, or attitude. Zhou [6] proposes a typical extension of DeLone and McLean’s model for e-shopping by introducing enjoyment (flow) and trust in the model, in which trust, flow, and satisfaction completely mediate the effect of system quality, information quality and service quality on intention to return.

To better take into account the e-shopping environment evolution, we use the concept of e-shopping system quality instead of the concept of website quality to refer to the combination of system quality, information quality, and customer service quality of websites [7,8], but also of mobile apps and electronic payment systems.

2.3. Integrated models of e-shopping acceptance

In order to provide a more complete explanation of continuous online consumer behavior, 11 of the 83 selected studies have attempted to integrate constructs from both models. A typical example is given by Ahn, Ryu, and Han [9], who successfully tested a model in which the TAM constructs, along with playfulness, completely mediate the effect of system quality, information quality, and service quality on intention to use: all relations of the proposed model are found to be significant. Another example of such an integration is given by [10] in their model based on the user satisfaction model of [11]: the three satisfaction constructs (about system, information, and service) intervene between the three quality constructs (system, information, and service quality) and the behavioral beliefs (usefulness, ease of use, and enjoyment), which in turn affect intention indirectly through attitude. Usefulness also affects intention directly.

3. Theoretical framework

3.1. Research questions

For the purpose of this paper, some changes had to be made to both models. Risk, social influence (from the extended TAM for e-shopping), customer satisfaction, and actual usage (from the e-commerce success model) are not studied because of insufficient data relating them to at least one of the other main constructs. In order to answer the general research question about the mediating role of attitude, trust, and beliefs (about usefulness and enjoyment) in the relation linking the dimensions of quality and the intention to return, the following three research questions are formulated:

1. How well does the revised extended TAM model for e-shopping (without risk and social influence) explain intention to return of experienced users?
2. How well does the revised e-shopping success model (without satisfaction and actual usage) explain intention to return of experienced users?
3. Do perceived usefulness, enjoyment, trust, and attitude fully mediate the relation between e-
shopping quality (system quality, information quality, and service quality) and the intention to return of experienced users?

3.2. Research models and hypotheses

Figure 1 illustrates the three models used to answer the above three research questions: Model 1 for question 1, Model 2 for question 2, and Model 3 for question 3.

Model 1
The extended TAM model of e-shopping acceptance

- Attitude towards usage
- Usefulness
- Enjoyment
- Trust

Intention to return

H1:

Model 2
The e-shopping success model

- System quality
- Information quality
- Service quality

Intention to return

H2:

Model 3
An integrated model of e-shopping acceptance

- System quality
- Information quality
- Service quality

Intention to return

H3:

Figure 1. The three research models

Model 1 leads to a set (H1) of hypotheses on the role of the extended TAM explanatory variables (H1), which are:

H1a: Attitude towards usage affects positively the intention to return of experienced users.
H1b: Perceived usefulness affects positively the intention to return of experienced users.
H1c: Enjoyment affects positively the intention to return of experienced users.
H1d: Trust affects positively the intention to return of experienced users.

The set of hypotheses (H2) for the e-shopping success model Model 2 is:

H2a: System quality affects positively the intention to return of experienced users.
H2b: Information quality affects positively the intention to return of experienced users.
H2c: Service quality affects positively the intention to return of experienced users.

As for the integrated model of e-shopping acceptance, Model 3, the approach is based on the procedure proposed by Baron and Kelly for testing mediation [12]. The same set of hypotheses as in Model 1 (H1) is kept and because of the supposed full mediating role of the extended TAM explanatory variables, one additional set of hypotheses is formulated (H3). These hypotheses are:

H3a: In the presence of attitude, usefulness, enjoyment, and trust, the system quality does not directly affect the intention to return of experienced users.
H3b: In the presence of attitude, usefulness, enjoyment, and trust, the information quality does not directly affect the continuance intention of experienced users.
H3c: In the presence of attitude, usefulness, enjoyment, and trust, the service quality does not directly affect the intention to return of experienced users.

According to Baron and Kenny’s procedures [12], the mediation verification process is incomplete if there is no significant link between the independent variable and the mediating variable. To respect the spirit of the procedure, a last set of hypotheses (H4) is formulated to link the quality variables to the extended TAM variables. These hypotheses are:

H4a: The system quality, information quality, and service quality positively affect attitude towards usage.
H4b: The system quality, information quality, and service quality positively affect perceived usefulness.
H4c: The system quality, information quality, and service quality positively affect enjoyment.
H4d: The system quality, information quality, and service quality positively affect trust.

4. Method

The hypotheses are tested using OLS linear regression meta-analysis. Meta-analysis is a method of quantitative research synthesis which can be used to summarize inconsistent or even contradictory empirical results and/or to test a theory [13]. Meta-analysis cumulates effect sizes, such as correlations, and requires going through several steps and making decisions as we go along. In recent years, meta-analysis has become increasingly popular in leading journals publishing IS and e-commerce research (for example [2], p. 14-17) and has even been recommended to synthesize IT acceptance research [18].

4.1. Study identification and selection

First, an extensive bibliographic search was conducted on several databases (ABI/inform (Proquest), Business Source Complete, IEEE Xplore and ACM digital library) and publishers’ sites. This search led to the identification of 155 studies pertaining to the application of the TAM or of the IS success model to e-shopping and in which effect sizes, in the form of Pearson’s correlations, are reported. To ensure some conceptual homogeneity, specific selection criteria were used to retain a study as a TAM or a IS success based study:

1) TAM based studies had to include correlations between perceived usefulness, perceived ease of use, and at least one of the following dependant variables, namely attitude, intention or usage, and

2) IS success based studies had to include correlations between at least system quality, information quality, and user satisfaction.

Because the present research is dedicated to the intention to return of experienced users, an additional criterion was taken into consideration, namely users’ experience; in fact, a careful analysis of the studies led to the retention of 83 independent studies from 78 different publications (5 of the 83 references report data about two independent studies) in which there was evidence that all the respondents were experienced users. The studies were encoded in a SPSS database containing 416 correlations linking the eight research variables.

4.2. Meta-analysis procedures

To test the hypotheses, a meta-analytical correlation matrix linking the eight research variables has to be calculated. In order to do so, a two-step procedure is followed. First, Hunter and Schmitt’s formula is used to individually correct correlations for attenuation due to unreliability [19] (p. 96). The missing reliability coefficients are replaced by their mean value. Second, a random effect model is used to compute mean correlations and their 95% confidence interval: the Lipsey and Wilson SPSS syntax “metamean” procedure is used to do so [20]. Aggregating correlations into a mean correlation matrix raises the particular problem of unequal cumulative sample sizes in each correlation matrix cell. To bypass this problem, a conservative minimum of the cumulative sample size, across all the cells of the correlation matrix, is used for regression analyses.

4.3. Method for hypotheses testing

The meta-analytically derived correlation matrix then serves as input to perform the regression analyses. Seven ordinary least square (OLS) models are used to test all the hypotheses: one for the H1 set of hypotheses (Model 1), one for the H2 set (Model 2), one for the H1 and H3 sets (Model 3), and four separate models for each hypothesis of the H4 set (Model 3). In the spirit of Baron and Kenny's procedure [12], in Model 3, block regression analysis is used by introducing, in a first block, attitude, perceived usefulness, and enjoyment and, in a second block, system quality, information quality, and service quality. Regression analysis is preferred to SEM because, in order to test Model 3, SEM would have imposed causal relations between perceived usefulness, enjoyment, and trust, for which there are no clear theoretical grounds, and because statistical comparison between square correlations coefficients is not available in SEM [2].

5. Results

Table 1 presents some descriptive statistics about the studies included in meta-analysis. Of the 78 research sites, 22 are located in Taiwan, 16 in the USA or Canada, and 11 in South Korea. It is worth noting that the studies on e-shopping intention to return have taken place all over the world: in China including Hong Kong and Macao (8 studies), in Malaysia (5), in Spain (4), and in Australia, Egypt, India, Saudi Arabia, South Africa, and Turkey (1 study each). The mean sample size of those studies is 345 users. In the
correlation matrix, the total number of studies (K) per cell ranges from 2 to 66 and the cumulative sample size (N) from 1070 to 23,278. Note that according to [21], a strict minimum of 2 studies per cell is required for meta-analysis. The meta-analytically derived correlation matrix is presented in Appendix.

Table 1. Descriptive statistics about the studies used in the meta-analysis

<table>
<thead>
<tr>
<th>Number of references</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country studied</td>
<td>Taiwan (22) USA / Canada (16) South Korea (11) Other countries (26) Missing (6)</td>
</tr>
<tr>
<td>Period of publication</td>
<td>2002-05 10.8% 2006-09 21.6% 2010-13 34.9% 2013-14 19.2%</td>
</tr>
<tr>
<td>Number of studies</td>
<td>83</td>
</tr>
<tr>
<td>Sample size</td>
<td>Sum 37,568 Min. 52 Max. 2,342</td>
</tr>
<tr>
<td>- TAM</td>
<td>75%</td>
</tr>
<tr>
<td>- IS success</td>
<td>12%</td>
</tr>
<tr>
<td>- Mixed</td>
<td>13%</td>
</tr>
<tr>
<td>Cumulative (K) number of studies</td>
<td>Mean 17 Min. 2 Max. 66</td>
</tr>
<tr>
<td>Cumulative sample size (N)</td>
<td>Min. 7,025 Max. 23,728</td>
</tr>
</tbody>
</table>

The tests of the H1, H2 and H3 sets of hypotheses are presented in Table 2. All nine hypotheses are verified. Because the sample size used here is quite large (1070), it is advisable to interpret the size of the β coefficients along with their p-value. The extended TAM (Model 1) explains 56.1% of the variance in e-shopping return intention (Adj. R²=0.559, F=340, p<0.001). The most influential variable is attitude towards usage (β=0.32, p<0.001), followed by usefulness (β=0.23, p<0.001), trust (β=0.21, p<0.001), and enjoyment (β=0.13, p<0.001).

The e-shopping IS success model (model 2), by itself, has a more limited level of explanation of the variance in e-shopping intention to return (Adj. R²=0.433, F=161, p<0.001). Service quality (β=0.31, p<0.001) and, equally, system quality and information quality (β=0.21, p<0.001) directly predict intention to return.

In the integrated e-shopping acceptance model (Model 3), the addition, to the extended TAM model for e-shopping, of the three e-shopping system quality variables does not significantly change the explanation level of the variance of intention to return (Adj. R²=0.562, ΔR²=0.001, ΔF=0.53, p=0.816). Again, the integrated model confirms the H1 set of hypotheses with almost no changes in the size of the β’s when comparing the results of model 3 with the results of model 1.

Table 2. Results of the meta-analytic regression analysis of intention to return

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attitude towards usage</td>
<td>β¹ 0.32***</td>
<td>β 0.34***</td>
<td></td>
</tr>
<tr>
<td>Usefulness</td>
<td>β 0.23***</td>
<td>β 0.22***</td>
<td></td>
</tr>
<tr>
<td>Enjoyment</td>
<td>β 0.13**</td>
<td>β 0.13**</td>
<td></td>
</tr>
<tr>
<td>Trust</td>
<td>β 0.21***</td>
<td>Δβ 0.22***</td>
<td></td>
</tr>
<tr>
<td>System quality</td>
<td>β 0.21***</td>
<td>Δβ 0.03 ns</td>
<td></td>
</tr>
<tr>
<td>Information quality</td>
<td>β 0.21***</td>
<td>Δβ 0.04 ns</td>
<td></td>
</tr>
<tr>
<td>Service quality</td>
<td>β 0.31***</td>
<td>Δβ 0.03 ns</td>
<td></td>
</tr>
<tr>
<td>Adj. R²</td>
<td>0.559</td>
<td>0.433</td>
<td>0.559</td>
</tr>
<tr>
<td>R²</td>
<td>0.561</td>
<td>0.435</td>
<td>0.562</td>
</tr>
<tr>
<td>ΔR²</td>
<td>0.001 ns</td>
<td>0.001 ns</td>
<td>0.53 ns</td>
</tr>
<tr>
<td>F for ΔR²</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹*** p<0.001, ** p<0.01, * p<0.05, ns = non significant, n=1070

Examination of Table 3 leads to the conclusion that the four hypotheses (H4) linking the e-shopping system quality to the four explanatory variables of the extended TAM for e-shopping are also confirmed. In
In fact, e-shopping system quality directly affects attitude (Adj. $R^2=0.679$, F=754, p<0.001), perceived usefulness (Adj. $R^2=0.478$, F=327, p<0.001), enjoyment (Adj. $R^2=0.468$, F=315, p<0.001), and trust (Adj. $R^2=0.627$, F=599, p<0.001). Again, following the interpretation of [12], the mediation of attitude, usefulness, enjoyment, and trust may be considered to be full mediation.

Table 3. Results of the meta-analytic regression analysis of extended TAM variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Attitude towards usage</th>
<th>Usefulness</th>
<th>Enjoyment</th>
<th>Trust</th>
</tr>
</thead>
<tbody>
<tr>
<td>System quality Inform. quality</td>
<td>β^{1}</td>
<td>β</td>
<td>β</td>
<td>β</td>
</tr>
<tr>
<td>Service quality</td>
<td>0.46***</td>
<td>0.21***</td>
<td>0.08*</td>
<td>0.13***</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.679</td>
<td>0.478</td>
<td>0.468</td>
<td>0.627</td>
</tr>
<tr>
<td>R^2</td>
<td>0.680</td>
<td>0.479</td>
<td>0.470</td>
<td>0.628</td>
</tr>
</tbody>
</table>

1*** p<0.001, ** p<0.01, * p<0.05, n=1070

6. Discussion

6.1. Theoretical and practical implications

Organizations around the world try to offer e-shopping systems to accommodate an increasing number of online and mobile users hoping to make them use and return to their apps, visit and revisit their websites, and buy and buy again their products and services. According to e-Marketer 2014\(^2\), the online sales booming is mainly due to emerging markets and their enthusiasm for mobile phones.

Our results show that designing and offering high quality e-shopping systems is not enough to incite users to reuse, revisit and/or repurchase if they do not have a positive attitude towards doing so, feel that it will be useful and enjoyable, and cannot trust the web merchant. In fact, they demonstrate, firstly, the full mediation role of those dispositions in explaining intention to return and secondly, that consumers’ perceptions about e-shopping system quality properties, although they significantly influence dispositions about reusing, are more distal precursors of usage than suggested by the e-commerce success model. These findings contribute to bridge the conceptual gap that exists in the e-shopping success model between the quality dimensions and the usage intention and/or the actual usage [11]. Consequently, this research confirms that the theory about technology acceptance should integrate, in the following sequence, (1) object beliefs (perception of the e-shopping system quality), (2) behavioral beliefs (usefulness, enjoyment, and trust), and attitude, and (3) intended behavior [10].

E-Shopping systems are techno-marketing systems and their design, operation and promotion should benefit from the involvement of teams including members from both disciplines in order to avoid that too much emphasis is put on the technical aspects of the system and that users’ beliefs and attitudes about its use are neglected. Traditional marketing tools such as advertising and promotion can help in strengthening those behavioral dispositions.

The demonstrated role of system quality, information quality, and service quality in, conjointly and individually, strengthening favorable dispositions towards e-shopping is also interesting to note. Conjointly, these three quality variables explain a very high percentage of the variance of attitude (68%) and trust (63%), and a high percentage of the variance of usefulness (48%) and enjoyment (47%) which means that researchers and practitioners need to continue looking for ways to improve systems usability, information content, and customer service. This is also an interesting result for practice: it brings insights about the fact that good e-shopping systems should contain functional, but also hedonic and customer service properties [22] to create perceived usefulness, but also enjoyment when customers use it.

As for service quality, our research shows that it has a strong influence on trust ($\beta = 0.53***$), attitude ($\beta = 0.45***$), and enjoyment ($\beta = 0.38***$). Practitioners should pay particular attention to the quality of the online consumer service since it is an important predictor of the consumer’s attitude towards e-shopping and the trust she or he feels when dealing with their company. In addition, bad service can have a very negative effect on the consumer’s future behavior itself, and on the behavior of other consumers if, for example, a negative word-of-mouth circulates on social networks or if a negative evaluation is discussed on an online forum or posted on an online customer review system: all together, these effects may have a negative impact on their attitude, enjoyment, and trust and, consequently, on their intention to return. Those results also call for a more systematic utilization of usability testing, collaboration, and even co-creation with

\(^2\) E-Marketer, Global B2C Ecommerce to Hit $1.5 Trillion This Year Driven by Growth in Emerging Markets, 2014 (accessed 30.05.14).
consumers to obtain a better understanding of their needs and preferences and to integrate features that will increase their perceptions of usefulness, enjoyment, and trust [23].

6.2. Research opportunities

In this present research, due to a lack of data, we had to set aside the consumer satisfaction and the social influence variables which, as demonstrated in the past, are direct and/or indirect predictors of intention to return to e-shopping systems [24-26]. The inclusion of these two variables in our model and their role and place validation, using meta-analysis, in the proposed nomological network are thought to be interesting additional steps for the building of a more comprehensive theory of e-shopping systems reuse.

For the above reasons, we chose to use regression analysis rather than structural equations to study our mediation assumptions. A future step would be to test the model using structural equation modelling (SEM) to confirm all the sets of hypotheses formulated here.

Another suggested research avenue would be to continue the integration of more distal concepts of the intent to return by integrating, for example, as did Xu et al. [10], the system quality, information quality, and service quality sub-dimensions which would, hopefully, put forward more concrete results and recommendations on which practitioners can work: it is too early to summarize these relationships using meta-analysis because too few studies on these topics have been published to date.

6.3. Research limits

The absence of sufficient research data on actual use (as the dependent variable) is clearly a major weakness of all the studies in the field of information systems in general and e-shopping systems in particular [27]. Obviously, this research suffers from the same defect. To assess the mediation of behavioral beliefs, trust, and attitude variables and in the absence of a formal statistical test of mediation for block of variables in regression analysis (or for sub nested models in SEM), the present research had to rely on more informal principles developed by Baron and Kenny [12].

7. Conclusion

By providing an integrated view of the relationship between online purchasing systems quality, consumers’ beliefs, and their attitude regarding e-shopping and their online intended returning behavior, this research may serve as an anchor point for studies that would focus on exploring technological and marketing solutions to further increase the perceived quality of the e-shopping systems and to better promote and advertise their use. By doing so, more practical, concrete, and transferable recommendations may emerge to benefit e-merchants and their customers.

References

Appendix. Correlation matrix, number of studies (K), and cumulative sample size (N)

U = usefulness, ENJ = enjoyment, TR = trust, ATT = attitude, IR = intention to return, SYQ = system quality, INQ = information quality, SEQ = service quality

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>ENJ</th>
<th>TR</th>
<th>ATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>0.62</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENJ</td>
<td></td>
<td>0.62</td>
<td>0.57</td>
<td>0.55</td>
</tr>
<tr>
<td>TR</td>
<td>0.62</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATT</td>
<td>0.67</td>
<td>0.62</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>IR</td>
<td>0.65</td>
<td>0.59</td>
<td>0.60</td>
<td>0.67</td>
</tr>
<tr>
<td>SYQ</td>
<td>0.61</td>
<td>0.65</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>INQ</td>
<td>0.56</td>
<td>0.56</td>
<td>0.68</td>
<td>0.65</td>
</tr>
<tr>
<td>SEQ</td>
<td>0.56</td>
<td>0.76</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>SYQ</td>
<td>0.58</td>
<td>0.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INQ</td>
<td>0.59</td>
<td>0.59</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>SEQ</td>
<td>0.61</td>
<td>0.69</td>
<td>0.71</td>
<td></td>
</tr>
</tbody>
</table>

K = number of studies, N = cumulative sample size