Information and communication technology (ICT) continues to serve as a prerequisite for successful supply chain management (SCM) and its importance is yet expected to increase in the future. New buzz words are continuously coming up increasing the interest on this topic. This includes but is not restricted to big data, decision analytics, cloud computing, and alike.

Efficient SCM incorporates and links to information systems, planning tools for decision support as well as supporting devices. While modern ICT systems are vital components in supply chains, their successful management rests on coordinated decision making within logistics networks. These networks can be seen on a large scale for supply chains and distribution networks in a multinational context; but they can also be seen on a small scale, once we consider specific nodes within these networks, let them be, e.g., airports or container terminals and the logistics within them.

Simulation and optimization can be employed for, e.g., inventory, production, procurement, distribution planning, and beyond. Intelligent devices can, e.g., communicate with different partners in the supply chain. Moreover, we see a continuing extension even towards economics issues.

Linking intelligent information management to decision analytics and intelligent decision support systems also means that we have to constantly observe changes and possibly react, but also be proactive, regarding these changes, let them be on the ICT side, the modeling side, or the algorithmic side. With this we also observe advances in the field of computational logistics; see e.g. [1], [2] and related contributions.

This year, our minitrack consists of three papers dealing with intelligent decision support in the field of logistics and SCM. The papers provide a heterogeneous yet complementary ensemble as they consider different approaches in coping with specific problems within the considered networks as well as the way to face specific problems and their complexity found in real-world decision making.

In the paper Dynamic Hub Location Problems with Single Allocation and Multiple Capacity Levels important changes regarding logistics network structure and configuration are considered. That is, specific changes in the cost and demand structure within distribution networks force companies to frequently reconfigure the network with a special focus on hub locations. Different models are considered regarding their possible computational performance.

The second paper deals with Decision Support for Capacitated Arc Routing for Providing Municipal Waste and Recycling Services. Given a network with demands on the arcs the capacitated arc routing problem is to find a set of minimum cost routes for a set of vehicles to service all arcs with positive demands without violating the capacities of a given set of vehicles. This problem is well considered in literature and recent work aims at extending the classical formulation and incorporating additional side-constraints as they arise in real-world decision making. In this paper the idea is to provide decision support for the city of Calgary, Canada, when the proposed routing is incorporating seasonal trends of waste creation.

On a smaller scale the third paper deals with yet complex problems regarding Intelligent Decision Support for Aircraft Logistics at Commercial Airports. While airports can be seen as open systems of passenger and material flow, we also see various issues regarding the interplay of daily operations versus the analytics of strategic decision making. A natural and yet important approach is the development and investigation of a discrete-event simulation model for examining how changes in airport design, ground resources, operating procedures and sequencing techniques for traffic movements affect different stakeholders.

References