DO I SWITCH? UNDERSTANDING USERS’ INTENTION TO SWITCH BETWEEN SOCIAL NETWORK SITES

Liu Fei
Hong Kong Baptist University
fliu09@comp.hkbu.edu.hk
Xiao Bo
University of Hawaii at Manoa
boxiao@hawaii.edu

Abstract

With the growing popularity of online social network sites (SNSs) and increasing competition among the leading players, users’ switching behavior between different SNSs becomes an issue of great interest to information systems researchers and practitioners, as user retention is the key to the success of SNSs. In this paper, we draw from the push-pull-mooring model and the uses and gratification theory to investigate factors influencing SNS users’ switching behavior. The results of a survey on current Facebook users show that both dissatisfaction with the original SNS and relative attractiveness of the competitive SNS exert strong positive impact on users’ decision to switch to the competitive SNS. Moreover, switching costs not only reduce users’ switching intention directly but also mitigate the impact of dissatisfaction and relative attractiveness on users’ switching intention. This study has important contributions both to research and to practice.

1. Introduction

We are now embracing an era of Web 2.0 applications, among which the most influential are online social networking sites (SNSs) such as Facebook and Google+, which allow individuals to “present themselves, articulate their social networks, and establish or maintain connections with others” [1]. Along with the prosperity of SNSs, the competition among different SNSs for users has also become ever more intense. A key issue for SNSs facing increased competition is churn or the loss of users, which manifest in online service discontinuance and service switching behavior [2]. According to Johnson [3], 77% of social networking websites make money through advertising revenue. Thus, an SNS that has accumulated a large user base is in an advantageous position to attract advertising dollars from companies eager to increase market share. eMarketer [4] forecasts that advertisers will spend US$7.72 billion on social network advertising in 2012, representing a near 50% growth from 2011. Facing ever intensifying competition from peers for marketers’ advertising dollars, SNS providers have every intention to guard their most valuable user base and consequently a keen interest in understanding factors affecting users’ decision to switch from one SNS to another. Notwithstanding the apparent practical significance of SNS users’ switching behavior, there have only been a limited number of studies investigating this phenomenon [5]. Moreover, there is a lack of comprehensive understanding of various factors promoting or hindering users’ decision to switch from the SNSs they are currently using to others, resulting in limited explanatory power of the research models in existing studies of SNS switching. Drawing from the push-pull-mooring model and the uses and gratification theory, this study aims to address the gap in prior research by developing and testing a comprehensive theoretical model for understanding predictors of SNS users’ switching behavior. The findings of this study will have significant implications both for research and for practice.

The remainder of paper is organized as follows. In the next section, we review relevant literature on switching behavior and introduce our theoretical foundation. Next, we present the research model and related hypotheses. After that, we discuss the research methodology and present the results of data analysis. Finally, we conclude with discussion, and implications for both research and practice.

2. Theoretical Foundation

In this study, we adopt the push-pull-mooring model as the primary theoretical framework and draw from the uses and gratification theory to understand the switching behavior of SNS users.

2.1. Prior Research on Switching Behavior

Consumer switching behavior has been studied extensively in marketing research. Keaveney [6] was
one of the early studies that examined customers’ switching behavior in service industries. The results of a critical incident study conducted among over 500 service customers revealed more than 800 reasons for customers to switch services, which were then classified into eight general categories, including pricing, service failures, attraction by competitors, and the like. Following Keaveney (1995), many studies have been conducted to investigate consumers’ switching behaviors in various service industries, including mobile phone providers [e.g., 7], and auto repair services [e.g., 8]. This stream of research emphasized the important role of customers’ satisfaction and switching costs in deterring customers’ switching behavior.

In recent years, we have seen an increasing number of studies on individuals’ switching behavior with regards to information technologies. For instance, Keaveney and Parthasarathy [2] examined behavioral, attitudinal, and demographic factors discriminating continuers and switchers of Internet service providers. Through the lens of switching barriers theory, Kim et al. [9] explained email users’ switching behavior by studying the impact of customer satisfaction, attractive alternatives, and switching costs. Hsieh et al. [10] investigated the positive effects of extrinsic and intrinsic motivation on individuals’ intention to switch social media websites, as well as the moderating role of switching costs. A number of studies have also drawn from the Push-Pull-Mooring model (explained in detail in the next section) to examine different categories of factors influencing consumers’ intention to switch IT service providers [11], blog services [12, 13], SNSs [5], and online games [14].

2.2. The Push-Pull-Mooring Model

The push-pull-mooring model (PPM), originally developed in human geography literature to explain migration behavior [15], categorizes factors that affect individuals’ migration decisions into push, pull, and mooring factors. Whereas push factors are negative factors that drive people away from the origin, pull factors are positive attributes of a distant place that attract people away from the origin [15]. Mooring factors represent intervening personal and situational factors that moderate the effects of push factors or pull factors on individuals’ migration decisions [16].

Bansal et al. [8] were among the first marketing researchers who adopted the PPM model to understand consumers’ switching behavior between different service providers, by fitting relevant constructs into the push, pull and mooring categories. The results of their study revealed that, push, pull, and mooring variables had significant direct, and some moderating, effects on switching intention. In a similar vein, many IS researchers also adopted PPM to explain individuals’ intention to switch IT service providers [e.g., 5, 12, 13].

Although the explanatory power of the PPM model has been demonstrated repetitively in extant research, there exist some inadequacies in prior conceptualization of mooring and pull factors, which may explain the generally low variance explained in individuals’ switching intention. For instance, one of the most studied mooring factors is switching cost. Previous research either investigates switching costs as a unidimensional construct [8, 11, 14] or focuses only on one or two dimensions of switching costs (e.g., sunk cost [13], setup cost and continuity cost [5]). This study improves upon prior research by conceptualizing switching costs as a multidimensional construct to capture more accurately the range of switching barriers faced by IT users [17]. In addition, alternative attractiveness, the most discussed pull factors in prior research, is usually operationalized as either the availability of viable alternatives or the positive characteristics that attract customers towards a competitor [18]. However, as a customer usually judges the attractiveness of a competitor by comparing it with the alternative he/she currently owns or adopts [19], this study re-conceptualizes alternative attractiveness as relative attractiveness, obtained by comparing the original alternative with the competing alternative on various dimensions in accordance with the uses and gratification theory [20].

2.3. Uses and Gratifications Theory

According to the uses and gratifications theory [20], an explanation of individuals’ behavioral intention necessarily entails an investigation of their motivations and the values they want to gratify in engaging in such behavior. The theory has been adopted to study the usage of traditional media [e.g., 21] and new media (e.g., media on the internet) [e.g., 9, 22, 23-26], and has been validated as a powerful tool for understanding the reasoning behind individuals’ behavioral intention. In this study, we draw from this theory to identify the salient values that individuals desire to obtain from using social networking sites and conceptualize the values as dimensions of relative attractiveness (i.e., the Pull factor).

3. Research Model and Hypotheses

Figure 1 depicts the research model for this study. To study SNS users’ switching behavior, we focus on
users’ intention to switch SNSs (defined as the likelihood that users would switch from their current SNS to a competitive SNS), as the positive relation between behavioral intention and actual behavior is well-established in different disciplines. Next, drawing on the PPM model and the uses and gratification theory as theoretical anchor, we develop hypotheses from the research model.

3.1. Push Factors

In the context of SNS use, push factors represent the negative factors that drive users away from the SNS they are currently using. Dissatisfaction has been empirically shown to have a positive relationship with intention to switch services providers [27], such as hair stylists [8], email service [9], blog service [13], social networking websites [5] and online games [14]. As such, dissatisfaction with current SNS is adopted as the push factor for this study.

Since dissatisfaction is not our focus of contribution, we keep consistent with Cheng et al. [5]’s work, conceptualize users’ dissatisfaction with current SNS as a multi-dimensional construct comprising four dimensions: (1) Dissatisfaction with system quality, defined as dissatisfaction with the quality of technical infrastructures of a SNS, including speed of downloading, navigation structure, convenience of maintenance, and richness of function [5], (2) dissatisfaction with information quality, defined as users’ dissatisfaction with the overall quality of the information provided by a SNS, including the reliability, format, and amount of information [5], (3) dissatisfaction with community support, defined as users’ dissatisfaction with the quality of support provided by a SNS to help users communicate with their friends, and create and manage groups [5], and (4) dissatisfaction with member policy, referred to as users’ dissatisfaction with the regulations established by a SNS that all its users should adhere to, including terms and data use policy. Users who are dissatisfied with the aspects of system, information, community support, and/or member policy of the SNS that they are currently using are likely to leave the SNS for another SNS. We thus hypothesize:

H1: A user’s dissatisfaction with his/her current SNS will positively influence his/her intention to switch to another SNS. More specifically,

H1a-H1d: A user’s dissatisfaction with the technical quality (H1a), information quality (H1b), community support (H1c), and member policy (H1d) of his/her current SNS will positively influence his/her intention to switch to another SNS.

3.2. Pull Factors

In the context of SNS use, pull factors refer to the relative attractiveness of a competing SNS that pull users away from their original SNS and towards the competing SNS.
Bansal et al. [8] identified alternative attractiveness as an important pull factor in PPM, as it captures the positive characteristics of competing service provider that motivate customers to switch. However, according to the comparison-level theory, an individual assesses the “attractiveness” of an alternative service provider by comparing it with his/her comparison level (i.e., his/her current service provider). In line with this theory, the “attractiveness” of a competing SNS is more appropriately conceptualized as a relative value obtained from a comparison between the SNS that the individual is currently using and the competing one instead of an absolute set of positive characteristics about the competing SNS. This study adopts this approach and conceptualizes alternative attractiveness as a relative term, referred to as relative attractiveness. Further, this study conceptualizes relative attractiveness as a multi-dimensional construct. Guided by the uses and gratifications theory, which posits that individuals use media for their own purposes and seek gratifications from that use [20], and based on a comprehensive review of existing research, we identify six different types of values individuals may derive from SNS usage, which comprise the six dimensions of the relative attractiveness construct.

The first dimension of relative attractiveness is **relative socialization value**, defined as the extent to which users believe that their need of socialization with others will be better satisfied by the competing SNS than by the SNS that they are currently using. According to Korgaonkar and Wolin [28], individuals use Internet as “a facilitator of interpersonal communication and activities”. Socialization has been demonstrated in prior research as an important need individuals aim to gratify in participating in SNSs and virtual communities [e.g., 22-26, 29, 30, 31].

Relative social image enhancement value, the second dimension, is defined as the extent to which individuals believe that they may derive more respect and admiration from peers as a result of their use of the competing SNS than the use of their current SNS. As an interactive system, a SNS can be considered a channel to present one’s social image to favorable audience and obtain admiration directly from peers [23, 24, 32]. As a result, social image enhancement is a key motivation for using SNSs.

The third dimension of relative attractiveness is **relative escapism value**, defined as the extent to which individuals believe that their need to temporarily escape from the real world will be better satisfied by the competing SNS than by the SNS they are currently using. Escapism has been shown to be an important need individuals want to satisfy by Internet usage [e.g., 22, 33].

Relative self-improvement value, the fourth dimension, refers to the extent to which individuals believe that their need for continuous learning and competing with others will be better satisfied by the competing SNS than by the SNS they are currently using. The interactive social media context will not only provide individuals more opportunities to learn but also subject them to peer pressure, thus driving their need to self-improve to a greater extent. Self-improvement has been shown in prior research to explain certain amount of variance in web gratification and SNSs gratification [e.g., 22, 30].

The fifth dimension of relative attractiveness is **relative entertainment value**, defined as the extent to which individuals believe that their need of deriving fun or pleasure will be better satisfied by the competing SNS than by the SNS they are currently using. Entertainment value (or playfulness) has been validated as an important determinant of IT adoption/usage in prior literature [e.g., 23-25, 34, 35].

The last dimension is **relative information seeking value**, defined as the extent to which individuals believe that their need of searching for information will be better satisfied by the competing SNS than by the SNS they are currently using. Prior research has demonstrated information seeking as a salient motivation driving people to participate in virtual communities [22-26, 31].

Thus, we hypothesize that:

H2: The relative attractiveness of a competitive SNS will positively influence a user’s intention to switch to this SNS. More specifically,

H2a-H2f: A user’s perception of the relative socialization value (H2a), relative social image enhancement value (H2b), relative escapism value (H2c), relative self-improvement value (H2d), relative entertainment value (H2e), and relative information seeking value (H2f) of a competitive SNS will positively influence his/her intention to switch to another SNS.

3.3. Mooring Factors

Mooring factors are intervening variables that facilitate or attenuate the switching decision [15]. Consistent with prior studies of switching behavior in marketing and IS literature [5, 8, 13, 14], we adopt switching costs as the mooring factor that influences SNS users’ switching intention, as an antecedent and as a moderator.

Switching costs were originally conceptualized as a uni-dimensional construct and defined as “perceived economic and psychological costs associated with changing from one alternative to another” [18]. Klemperer [36] and Guiltinan [37] note that customers’
perceived switching costs should be multi-dimensional construct consisting continuity costs (i.e., costs caused by terminating the continued patronage of a service provider), learning costs (i.e., extra time and efforts associated with searching for and learning about a new provider), and sunk costs (i.e., psychologically important time and effort investment in a provider). Jones et al. [38] extend prior work and propose a six-dimension conceptualization of switching costs, which preserves important theoretical and practical distinctions across the dimensions. For instance, the continuity costs is split into lost performance costs, which captures the lost benefits secured via continued patronage of a provider [39], and uncertainty costs, which represents the perceived risks associated with a new service provider after switching [37]. In addition, three types of learning costs are differentiated, including costs associated with customer learning before switching (i.e., searching) [40], costs associated with customer learning after switching [41], and costs associated with new provider learning (i.e., extra time needed by the new provider to learn about users’ requirements and personal information before delivering services) [37]. In this study, we adopt the approach of Jones et al and specify the following six dimensions of switching costs: (1) lost performance costs, (2) uncertainty costs, (3) pre-switching search and evaluation costs, (4) post-switching behavioral and cognitive costs, (5) setup costs, and (6) sunk costs.

Lost performance costs refers to users’ perception of lost benefits and privileges by switching to the new SNS. For instance, as a user continues to use a SNS, his/her social network size and amount of activity usually increase in this SNS. As a result, this SNS may do a better job in helping him/her communicate with connected friends and find the profiles he/she may be interested in with greater efficiency and accuracy. Such benefits may be lost if the user switches SNS [39].

Uncertainty costs refers to a user’s psychological uncertainty or perceived risks associated with the performance of an unfamiliar SNS [37]. Prior research shows that uncertainty costs will deter customers from switching because they are unwilling to bear extra risks associated with switching [38]. The deterring effect of uncertainty costs will be especially salient in high-technology market characterized by heterogeneity and rapid changes, as in the case of SNSs [42].

Pre-switching search and evaluation costs, post-switching behavioral and cognitive costs and setup costs capture the time and effort involved in seeking and evaluating information of alternative SNSs, in adapting to the new SNS, and in initiating the service provided by new provider (i.e., setting up new account). Since customers will try to avoid learning to adapt new service routines and practices because of their inertia [43], therefore, SNS users will hesitate to switch to a new SNS when they perceive extra time and effort required in searching information, learning procedures and setting up new accounts in order to adapt the new SNS. As a result, those three costs all decrease SNS users’ switching intention.

Sunk costs refers to users’ perception of the time and effort they have already invested in their current SNS. Prior research has shown that the more investments customers have made on their current service provider, the less likely they will switch to another provider [44, 45]. Thus, sunk costs is an essential antecedent of users’ switching intention.

We posit Hypothesis 3 with its corollaries as follows:

H3: A user’s perception of costs associated with switching to a competitive SNS will negative influence his/her intention to switch to this SNS. More specifically,

H3a-H3f: A user’s perception of lost performance costs (H3a), uncertainty costs (H3b), pre-switching search and evaluation costs (H3c), post-switching behavioral and cognitive costs (H3d), setup costs (H3e), and sunk costs (H3f) associated with switching to a competitive SNS will negatively influence his/her intention to switch to this SNS.

In addition to directly detering users’ intention to switch, switching costs can also moderate the effects of push and pull factors on switching intention. In other words, despite the presence of strong push and/or pull forces (e.g., when the user is highly dissatisfied with the current SNS and/or the competitive SNS is very attractive), a user may nevertheless continue using his/her current SNS when anticipating high switching costs. In migration literature, mooring factors have been empirically shown to attenuate the relationship between push/pull factors and migration decisions [16]. Prior research in marketing [e.g., 8, 18] has also validated the moderating effects of mooring factors (and particularly switching costs) in service industry context. We posit Hypotheses 4-5 with their corollaries as follows:

H4-H5: A user’s perception of costs associated with switching to a competitive SNS will attenuates the relation between dissatisfaction and switching intention (H4) as well as that between relative attractiveness and switching intention (H5). More specifically,

H4a-H4f: A user’s perception of lost performance costs (H4a), uncertainty costs (H4b), pre-switching search and evaluation costs (H4c), post-switching behavioral and cognitive costs (H4d), setup costs (H4e), and sunk costs (H4f) associated with switching to a competitive SNS will attenuates the relation between dissatisfaction and switching intention.
4. Research Method

A questionnaire survey was conducted to test our research model. A total of 115 current Facebook users participated in this study. The questionnaire consisted of three different parts to (1) collect respondents’ demographic and background information, (2) obtain their assessment of Facebook (i.e., their current SNS) and a competitive SNS, and (3) explore other factors that can potentially influence their decision to switch to the competitive SNS.

The measurement items for the dependent variable, intention to switch, dissatisfaction, and switching cost, were adapted from Kim et al. [9], Cheng et al. [5] and Jones et al. [38] respectively (see Appendix A for examples). All these measurements were phrased as questions on seven-point Likert scales, from “strongly disagree” (1) to “strongly agree” (7). A nine-point comparison-based scale (from 1—“Only Applicable to Facebook” to 9—“Only Applicable to THE Competitor” with the mid-point being 5—“Equally Applicable to Facebook and THE Competitor”) was developed in this study to capture participants’ perception of the relative attractiveness of the competing SNS, as compared to Facebook. Measurement items for the six dimensions of relative attractiveness were adapted from prior research [22, 26, 30-32, 46].

4.1. Data Analysis

A total of 115 valid responses were collected, consisting of 50 males (43.5%) and 65 females (56.5%). 86.9% of them aged between 18 and 25. 90.4% of the respondents had used Facebook for more than 1 year. Over 75% of them spent more than one hour on Facebook per day. We employed Partial Least Squares (PLS, as implemented in SmartPLS 2.0.M3) to assess both measurement model and structural model [47].

4.2. Measurement Model

To validate the reflective constructs, individual item reliability was examined by the loadings of measures with their corresponding constructs. All the loadings (except for Intention to Switch) exceed 0.7, indicating good item reliability. In addition, internal consistency was assessed by examining composite reliability. The reliability of all constructs meets the benchmark for acceptable reliability (> 0.7), indicating that the measures have good internal consistency (see Table 1). Moreover, as shown in Table 1, the square-root of AVE of every construct in the measurement model is greater than the correlations of the construct with other constructs, indicating good discriminant validity of all constructs. Further, no item loads higher on a construct than on the one it intends to measure. Thus both convergent validity and discriminant validity of the measurements are ensured.

In this study, three second order formative constructs (i.e., dissatisfaction, relative attractiveness and switching costs) were created, aggregating the measurement items of their respective first-order constructs. We assessed the validity of the three formative second-order constructs in accordance with established guidelines [48]. First, we tested multicollinearity among the indicators by computing the Variance Inflation Factor (VIF) of each indicator. Results show that all the VIFs ranged from 1.194 to 1.362 for dissatisfaction, 1.308 to 1.968 for relative attractiveness and 1.209 to 1.837 for switching costs, all below 3.33 and thus indicating an absence of multicollinearity among the dimensions of the formative constructs. Second, we assessed the coefficients of the dimensions for dissatisfaction, relative attractiveness and switching costs. The component weights for Dissatisfaction with System Quality (0.017), Dissatisfaction with Information Quality (0.544), Dissatisfaction with Community Support (0.450), and Dissatisfaction with Membership Policy (0.267) indicate that, except for Dissatisfaction with System Quality, all dimensions are important determinants of dissatisfaction. The component weights for Relative Socialization Value (0.414), Relative Social Image Value (0.323), Relative Escapism Value (-0.321), Relative Self-improvement Value (0.504), Relative Entertainment Value (-0.013), and Relative Information Seeking Value (0.049) suggest that, except for Relative Entertainment Value and Relative Information Seeking Value, each component is important in determining relative attractiveness. Finally, component weights for Costs of Lost Performance (0.081), Uncertainty Costs (0.336), Pre-switching Search and Evaluation Costs (0.310), Post-switching Behavioral and Cognitive Costs (0.378), Setup Costs (0.065), and Sunk Costs (0.185) indicate that, except for Costs of Lost Performance and Setup Costs, all dimensions of switching costs are salient.
Table 1. Internal consistency and validity of constructs

<table>
<thead>
<tr>
<th></th>
<th>CR</th>
<th>INT</th>
<th>SQ</th>
<th>IQ</th>
<th>CS</th>
<th>MP</th>
<th>SL</th>
<th>SI</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT</td>
<td>0.932</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQ</td>
<td>0.840</td>
<td>0.207</td>
<td>0.720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQ</td>
<td>0.850</td>
<td>0.247</td>
<td>0.661</td>
<td>0.707</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>0.876</td>
<td>0.229</td>
<td>0.585</td>
<td>0.579</td>
<td>0.803</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>0.889</td>
<td>0.136</td>
<td>0.371</td>
<td>0.261</td>
<td>0.159</td>
<td>0.819</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>0.901</td>
<td>0.529</td>
<td>0.292</td>
<td>0.348</td>
<td>0.229</td>
<td>0.103</td>
<td>0.803</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>0.812</td>
<td>0.481</td>
<td>0.238</td>
<td>0.196</td>
<td>0.205</td>
<td>0.000</td>
<td>0.560</td>
<td>0.656</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>0.843</td>
<td>0.130</td>
<td>0.055</td>
<td>0.099</td>
<td>0.034</td>
<td>0.210</td>
<td>0.305</td>
<td>0.349</td>
<td>0.857</td>
</tr>
<tr>
<td>IP</td>
<td>0.910</td>
<td>0.510</td>
<td>0.103</td>
<td>0.162</td>
<td>0.179</td>
<td>0.051</td>
<td>0.628</td>
<td>0.590</td>
<td>0.538</td>
</tr>
<tr>
<td>ET</td>
<td>0.922</td>
<td>0.456</td>
<td>0.180</td>
<td>0.231</td>
<td>0.101</td>
<td>0.012</td>
<td>0.714</td>
<td>0.607</td>
<td>0.493</td>
</tr>
<tr>
<td>IS</td>
<td>0.895</td>
<td>0.364</td>
<td>0.103</td>
<td>0.084</td>
<td>0.092</td>
<td>0.024</td>
<td>0.533</td>
<td>0.479</td>
<td>0.439</td>
</tr>
<tr>
<td>PC</td>
<td>0.869</td>
<td>0.213</td>
<td>0.207</td>
<td>0.251</td>
<td>0.196</td>
<td>0.025</td>
<td>0.297</td>
<td>0.245</td>
<td>0.111</td>
</tr>
<tr>
<td>UC</td>
<td>0.908</td>
<td>0.295</td>
<td>0.277</td>
<td>0.341</td>
<td>0.199</td>
<td>0.080</td>
<td>0.336</td>
<td>0.187</td>
<td>0.126</td>
</tr>
<tr>
<td>SE</td>
<td>0.894</td>
<td>0.254</td>
<td>0.047</td>
<td>0.070</td>
<td>0.085</td>
<td>0.021</td>
<td>0.233</td>
<td>0.253</td>
<td>0.283</td>
</tr>
<tr>
<td>BC</td>
<td>0.852</td>
<td>0.304</td>
<td>0.221</td>
<td>0.232</td>
<td>0.112</td>
<td>0.006</td>
<td>0.327</td>
<td>0.205</td>
<td>0.130</td>
</tr>
<tr>
<td>SU</td>
<td>0.831</td>
<td>0.196</td>
<td>0.274</td>
<td>0.315</td>
<td>0.142</td>
<td>0.153</td>
<td>0.211</td>
<td>0.206</td>
<td>0.041</td>
</tr>
<tr>
<td>SK</td>
<td>0.919</td>
<td>0.190</td>
<td>0.091</td>
<td>0.133</td>
<td>0.005</td>
<td>0.142</td>
<td>0.248</td>
<td>0.265</td>
<td>0.154</td>
</tr>
<tr>
<td>INT</td>
<td>0.819</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQ</td>
<td>0.725</td>
<td>0.815</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQ</td>
<td>0.725</td>
<td>0.815</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>0.479</td>
<td>0.598</td>
<td>0.794</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>-0.313</td>
<td>0.728</td>
<td>-0.266</td>
<td>0.791</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>-0.223</td>
<td>-0.333</td>
<td>-0.197</td>
<td>0.410</td>
<td>0.876</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>-0.296</td>
<td>0.598</td>
<td>-0.370</td>
<td>0.370</td>
<td>0.354</td>
<td>0.858</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>-0.314</td>
<td>-0.352</td>
<td>-0.198</td>
<td>0.449</td>
<td>0.633</td>
<td>0.381</td>
<td>0.735</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>-0.111</td>
<td>-0.168</td>
<td>0.024</td>
<td>0.359</td>
<td>0.851</td>
<td>0.233</td>
<td>0.822</td>
<td>0.795</td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td>-0.262</td>
<td>-0.306</td>
<td>-0.196</td>
<td>0.234</td>
<td>0.243</td>
<td>0.359</td>
<td>0.262</td>
<td>0.266</td>
<td>0.957</td>
</tr>
</tbody>
</table>

Note 1: Bolded diagonal elements are the square root of AVE for each construct, and off-diagonal elements are the correlations between constructs.

4.3. Structural Model

The overall explanatory power of the model (indicated by R-squared) and path coefficients are presented in Figure 2. The results show that, as expected, relative attractiveness of a competitive SNS has significant positive effect on users’ intention to switch to the competitive SNS. In addition, switching costs have significant negative moderating effect on the relationship between dissatisfaction and switching intention and that between relative attractiveness and switching intention. However, contrary to expectation, dissatisfaction with current SNS and switching costs do NOT have direct impact on individuals’ switching behavior.

According to Jones et al. [18], as a key component of switching barrier, switching costs is more appropriately theorized as a negative moderator instead...
of a direct antecedent of users’ switching intention. Moreover, Cheng et al. [5] also found that switching costs shows no significant direct impact on users’ switching intention. Therefore our findings further support the moderating role of switching costs on deterring the positive influences of both dissatisfaction and relative attractiveness on switching intention.

While most of the dimensions for switching costs are shown to be salient, costs of lost performance and setup costs have no significant effects on SNS users’ switching intentions. A possible explanation can be that, after a user switches to another SNS, his/her account on the original SNS will not be affected, and thus he/she has minimum costs of lost performance to bear. In addition, with the rapid advance of user interface design, an individual’s effort required to set up an account on a new SNS drops constantly.

All the dimensions of relative attractiveness, except for relative escapism value, relative entertainment value and relative information seeking value, have significant positive effects on SNS users’ switching intention. According to Ellison et al. [1], most Facebook users use it as a platform to keep in touch with their real world acquaintances. Therefore, SNS usage is more likely to be motivated by a desire to enhance communication with real world people, as opposed to a desire to escape from the real world, which can explain the negative impact of relative escapism value. Likewise, as the primary goal for using Facebook is to build social network with acquaintances, an individual will be unlikely to leave his/her friends on the SNS that he/she is currently using simply because other SNSs are more fun to use or have more information to seek, which explains the non-significant effect of relative entertainment value and relative information seeking value.

In sum, the results of the study show that hypotheses H1, H1b, H1c, H1d, H2, H2a, H2b, H2d, H4, H4b, H4c, H4d, H4f, H5, H5b, H5c, H5d, and H5f are supported. Moreover, our model has explained 54.9% of the variance in users’ intentions to switch SNSs, compared to less than 30% variance explained in prior research on SNS switching intentions [e.g., 5, 12].

5. Conclusion and Discussion

This study makes significant contribution to research. First, this study extends prior research by developing and testing a comprehensive, theory-based model for understanding the determinants of SNS users’ switching behavior. Second, this study improves upon existing studies by re-conceptualizing alternative attractiveness as relative attractiveness of the new SNS as compared to the original SNS and identifying its major dimensions with the guidance of the uses and gratification theory. Our study further conceptualizes switching costs as a multidimensional construct and examines their influence as both predictor and moderator. Via such (re-)conceptualization, our theoretical model thus captures more accurately different pull and mooring factors affecting SNS users’ switching decision.

The findings of our research can also inform SNS practitioners. First, the proposed facilitating effect of relative attractiveness suggests several key needs individuals want to gratify through SNS usage. SNS providers can better prioritize their resources according to those needs and provide greater value for users, and hence reducing their likelihood to switch to a competing SNS. Second, the proposed intervening effect of switching costs also suggests that an online SNS provider can retain its users by increasing their switching costs, such as increasing their perceptions of sunk costs of by providing various applications and activities to enhance their participation in the SNS. Moreover, a SNS provider can also attract new users by reducing their time and effort spent in searching for and evaluating the SNS and decreasing their uncertainty about its performance.

Appendix A Sample Measurement Items

<table>
<thead>
<tr>
<th>Construct Sample Measurement Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching Intention (INT)</td>
</tr>
<tr>
<td>INT1: I am considering switching from Facebook to the competitive social network site.</td>
</tr>
<tr>
<td>Dissatisfaction with System Quality (DSQ)</td>
</tr>
<tr>
<td>DSQ1: To what extent are you satisfied with the technical quality of “Facebook”?</td>
</tr>
<tr>
<td>Dissatisfaction with Information Quality (DIQ)</td>
</tr>
<tr>
<td>DIQ1: To what extent are you satisfied with the information quality of “Facebook”?</td>
</tr>
<tr>
<td>Dissatisfaction with Community Support (DCS)</td>
</tr>
<tr>
<td>DCS1: To what extent are you satisfied with the community support of “Facebook”?</td>
</tr>
<tr>
<td>Dissatisfaction with Member Policy (DMP)</td>
</tr>
<tr>
<td>DMP1: To what extent are you satisfied with the member policy of your current social network site?</td>
</tr>
<tr>
<td>Lost Performance Costs (LPC)</td>
</tr>
<tr>
<td>LPC1: "Facebook" provides me with particular privileges I will NOT receive on another social network site.</td>
</tr>
</tbody>
</table>

† Because of the page limit for a conference paper, only one item has been shown for each construct.
<table>
<thead>
<tr>
<th>Costs (UC)</th>
<th>UC1: I am not sure what the level of performance will be if I switch to a new social network site.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEC (SEC)</td>
<td>SEC1: It will take a lot of time and effort to locate a new social network site.</td>
</tr>
<tr>
<td>BCC (BCC)</td>
<td>BCC1: If I were to switch social network sites, I would have to learn how things work at the new one.</td>
</tr>
<tr>
<td>STC (STC)</td>
<td>STC1: Signing up for a new social network site service is inconvenient.</td>
</tr>
<tr>
<td>SNC (SNC)</td>
<td>SNC1: A lot of energy, time, and effort have gone into using my current social network site.</td>
</tr>
<tr>
<td>RSL (RSL)</td>
<td>By using this social network site, I can ...</td>
</tr>
<tr>
<td>RIM (RIM)</td>
<td>RIM1: In all honesty, I can impress others by showing how good I am on this social network site.</td>
</tr>
<tr>
<td>REC (REC)</td>
<td>By using this social network site, I can ...</td>
</tr>
<tr>
<td>RSI (RSI)</td>
<td>By using this social network site, I can ...</td>
</tr>
<tr>
<td>RET (RET)</td>
<td>Using this social network site will ...</td>
</tr>
<tr>
<td>RIS (RIS)</td>
<td>By using this social network site, I can ...</td>
</tr>
</tbody>
</table>

References

