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Abstract

Recent work has presented hidden Markov mod-
els (HMMs) as a compelling option for virus iden-
tification. However, to date little research has been
done to identify the meaning of these hidden states.
In this paper, we examine HMMs for four different
compilers, hand-written assembly code, three virus
construction kits, and a metamorphic virus in order to
note similarities and differences in the hidden states
of the HMMs. Furthermore, we develop the dueling
HMM Strategy, which leverages our knowledge about
different compilers for more precise identification. We
hope that this approach will allow for the development
of better virus detection tools based on HMMs.

1. Introduction

Wong and Stamp [24] have shown that tools based
on hidden Markov models (HMMs) are effective at
detecting metamorphic computer viruses. This paper
explores these tools in more depth to better understand
the meaning of the hidden states in these models.
In other domains, the states of an HMM have

been connected with some fundamental aspects of the
problem at hand. Cave and Neuwirth [3] reveal that an
HMM with two hidden states for the English (written)
language corresponds to vowels and consonants. This
paper attempts to reveal details about the hidden states
and determine what insights they might provide about
assembly code in general, and virus code in particular.
A key insight is that virus construction kits and

metamorphic code are essentially another type of
compiler. Our tests build models for four different
compilers, for hand-written (benign) assembly code,
for three virus construction kits, and for a metamorphic
virus. We identify salient points of our models, noting
how hand-written assembly differs from compiled code
and how benign code differs from virus code.

We leverage this understanding of different models
to more effectively detect computer viruses. The tradi-
tional approach uses a hidden Markov model of virus
code and flags a file as infected if it exceeds a given
threshold [24]. Instead, we test the file against several
different HMMs and flag the file as a virus only if the
virus HMM reports the highest probability of observ-
ing the given file. We dub this approach the dueling
HMM strategy, evoking the notion that the different
HMMs are competing against one another. Our results
show that the dueling HMM strategy achieves superior
results to the threshold-based technique, and is often
effective at identifying viruses. While multiple HMMs
have been leveraged in other areas such as intrusion
detection [6], this approach has not previously been
applied to virus identification.
Signature-based detection is the primary method

of identifying computer viruses [23]. However, virus
makers have been resourceful, and have developed a
variety of counter-measures. One early approach used
by virus writers was to encrypt the body of the virus
code. However, this technique could often be defeated
by looking for the signature of the encryptor itself [23].
Polymorphic code defeats this detection technique by
mutating the code responsible for encryption. Antivirus
detection can still identify these programs by scanning
decrypted data for the virus signature.
Metamorphic viruses build on the polymorphic tech-

niques to transform the entire virus, thereby defeating
signature-based detection approaches. Compounding
the danger, virus construction kits have been created
that make it easy for people with limited technical
ability to create sophisticated viruses. Other threats
such as evolvable malware [14] still remain theoretical,
but might further complicate virus detection.
Research shows that better virus detection tools

are needed to handle these threats. Christodorescu
and Jha [7] test different malware detectors and
show that many commercial products are ill-equipped
to handle code obfuscation techniques. Kruegel et
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al. [17] use control-flow graphs to detect polymor-
phic/metamorphic worms. Bruschi et al. [2] use this
technique to to normalize programs and compare the
results, testing their technique against the MetaPHOR
virus. Mohammed [21] uses zeroing transformations,
which perform a series of transformations on a pro-
gram to convert it to a “zero form”. Signature-based
methods can then be used on the zero form program.
Leder et al. [18] use value set analysis, performing a

static flow analysis and check for values that are char-
acteristic of a piece of malware. Zhang and Reeves [25]
statically analyze programs to compare semantics
based on the pattern of library calls. Christodorescu
et al. [8] consider the semantics of programs in order
to identify polymorphic/metamorphic malware.
Hidden Markov models use a statistical approach

to identify these viruses. Wong and Stamp [24] use
HMMs to identify viruses from different virus con-
struction kits (VCKs) with a high degree of accuracy.
Attaluri et al [1] consider the application of profile hid-
den Markov models, which consider positional infor-
mation. Their results show that positional HMMs can
be effective for detecting certain types of metamorphic
viruses, but do not perform well when viruses shift
blocks of code far apart. Josse and Filiol [16] discuss
the application of Bayesian techniques to detecting
metamorphic viruses, considering both naive Bayes
and HMMs.
Chess and White [5] show that there are computer

viruses that no algorithm can detect. Song et al. [22]
highlight the challenges that polymorphic techniques
present to signature-based approaches and any genera-
tive approaches to producing malicious code. Filiol and
Josse [11] discuss statistical testing simulability and
show how attackers can evade detection by exploiting
the defender’s detection model. Lin [19] explores this
idea further by creating viruses specifically designed to
avoid HMM-based detection. In short, a metamorphic
virus can be designed to select mutations only if the
mutations will make the program appear to be more
like a benign program.

2. Dueling HMM Strategy

A central contribution of this paper is a novel
method of applying hidden Harkov models to virus
identification. The dueling HMM strategy differs from
traditional HMM-based approaches in that it leverages
HMMs of benign code, rather than relying on a single
HMM of the target virus family. While there is an
additional performance penalty, it appears to achieve
more accurate results.

The standard application of HMMs to virus identi-
fication works as follows:
1) Build an HMM from virus code.
2) Determine the proper “threshold value”.
3) For any new file, determine the probability of observ-
ing the given sequence of opcodes, normalized for the
length of the observation. If the probability is less than
the threshold value, the file is flagged as a virus.

There are several benefits to this approach. Since only a
single HMM is required, the analysis can be performed
more efficiently. Also, it is straightforward to adjust
the threshold value in order to set the desired balance
between false positives and false negatives.
Rather than rely on threshold values, the dueling

HMM strategy uses the following process:
1) Build N HMMs of benign code, representing code
compiled by different compilers.

2) Build M HMMs of virus code, representing the dif-
ferent viruses to identify.

3) For any new file, determine the probability of observ-
ing the sequence of opcodes for each of the N + M
HMMs.

4) If the HMM reporting the highest probability repre-
sents virus code, the file is flagged as a virus.

This approach takes more overhead, but the benefit
of leveraging information about different compilers
allows for a more fine-grained analysis, and seems to
achieve superior results.
It is illuminating to compare the two approaches

in identifying MetaPHOR-infected files, discussed in
Section 7. The diagram below shows the distribution of
probabilities reported for one test of the 4-state HMM
built from MetaPHOR-infected code. The black dia-
monds represent probabilities for different MetaPHOR-
infected files. The other shapes represent benign pro-
grams built with different compilers, outlined in Sec-
tion 3. The traditional, threshold-based approach would
draw a horizontal line across the diagram representing
the threshold; ideally, all black diamonds should be
above the threshold line and all other shapes should
be below.
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The results highlight the difficulty of determining a
threshold value that does not have a high number of
false positives for some compiler. For instance, if the
threshold value is set to -2.55, 75% (9/12) infected files
are correctly identified. However, 57% (53/92) benign
files are mistakenly flagged as viruses.
The dueling HMM strategy includes five additional

HMMs, representing benign code compiled with the
four different compilers and hand-written assembly
code built with Turbo Assembler. The dueling HMM
strategy correctly identifies 83% (10/12) of the infected
files, without a single false positive.
With the dueling HMM strategy, there is no thresh-

old value. A downside of this strategy is that it is
not straightforward to adjust the balance between false
positives and false negatives. However, introducing a
bias to the results in favor of some HMMs could
provide this flexibility.

3. Models for Different Compilers

A focus of our work is to identify the tools used to
build a specific program. Our initial tests are designed
around identifying the underlying compiler, since the
vast majority of benign programs are likely to be
compiled from a higher level language.
We use four different compilers for our tests.

These include Gnu’s venerable GCC compiler [13],
the Clang [9] front-end for the LLVM project, the
MinGW port of GCC to Windows, and the Turbo C
compiler. We use the JAHMM toolkit [12] and code
from http://www.c.happycodings.com to both train and
test our models.

3.1. Using compiler generated assembly

Our initial models are constructed using assembly
code generated directly by the compilers. In this sec-
tion, we only consider the GCC and Clang models.
All programs were compiled to assembly on an OS X
laptop running version 10.6.8.
Following Wong and Stamp [24], we consider only

the x86 operation codes (opcodes) for these models.
The assembly generated by these two compilers is
substantially different in the use of opcodes. In fact,
it is sufficient to search for the presence of a few
specific opcodes to conclusively identify the compiler.
For instance, the CALL opcode occurs frequently in
the GCC-generated assembly code, but never in the
Clang assembly, which uses CALLQ instead.
HMMs are not especially useful in this case. How-

ever, a view of some of the models is illuminating.
Figure 1 shows HMMs with 4 hidden states generated

for the GCC compiler on the left and the Clang
compiler on the right.
HMMs do not always have a single starting state,

and instead have probabilities for starting in each state.
However, both of these models start in a specific state
with 100% probability. This pattern held with many of
the HMMs that we develop in this paper.
The HMMs show a remarkable similarity in their

structure. For both models, the initial state is always
dominated by the observation of MOVQ and MOVL
opcodes. A second state is made up almost exclusively
of MOVSD observations.
The remaining states show more variety. Both

State 2 in the GCC HMM and State 6 in the Clang
model have a high probability for observing JMP, RET,
and conditional jump opcodes. However, State 2 also
has a high probability of observing the LEAVE opcode.
State 3 of the GCC HMM is dominated by obser-

vations of the CALL opcode. However, it also con-
tains some probability of observing conditional jump
opcodes. In contrast, State 7 of the Clang HMM has
almost 100% probability of observing CALLQ.
While these models show some interesting details

about how the assembly code is generated, in anti-
virus detection we are unlikely to receive the original
assembly code. Instead, we will be presented with
executables that we will first need to disassemble
before we will be able to do any significant analysis.
The resulting assembly code is significantly different
than that generated by the compilers themselves. In the
next section, we will explore the models built from
assembly generated from a disassembler.

3.2. Using disassembled assembly

As Wong and Stamp observe [24], a more realistic
model for generating assembly in antivirus detection
compiles the source code and then disassembles the
resulting binaries. For these tests, we used IDA Pro
version 6.2.111006 as our disassembler.
The resulting assembly code is markedly different

from the assembly code produced by the compilers
themselves. As a result, identifying the original com-
piler becomes somewhat more complicated.
In this section, we develop HMMs for four different

compilers. The models are shown in Figure 2.
Four states seems to be the optimal number of states,

determined by our testing in Section 3.3. All four
models seem to have the same basic structure. The
four states can roughly be described by the opcode
most likely to be observed when in that state: the
PUSH state; the MOV state; the CALL state; and the
miscellaneous state.
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Figure 1: GCC HMM and Clang HMM with 4 Hidden States from Compiler Generated Assembly
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GCC Observation Probabilities
0 1 2 3

MOVQ 47% MOVSD 95% JMP 42% CALL 79%

MOVL 46% SET* 5% J* 24% J* 21%

Other 7% RET 16%

LEAVE 16%

Other 2%

Clang Observation Probabilities
4 5 6 7

MOVQ 47% MOVSD 95% J* 47% CALLQ 100%

MOVL 46% SET* 5% JMP 40% Other < 1%

Other 7% RET 13%

SET*: SETE, SETNE, SETL, SETLE
J*: JA, JE, JG, JGE, JL, JLE, JNE, JAE, JB, JBE, JP, JS, and JNS.
Note: Due to rounding, probabilities do not always add up to 100%

The PUSH state always includes POP and RETN as
significant opcodes. The odds of starting in this state
are 100% with the GCC, Clang, and MinGW HMMs.
The MOV state always includes a significant amount

of JMP and conditional jump operations, and usually
has a high probability of observing the LEA opcode.
The CALL state observes CMP and ADD and

conditional jump opcodes with a high probability.
The final state is not dominated by any observation,

though TEST, SUB, and XOR are common.
The model for GNU’s Compiler Collection (GCC),

version 4.2.1 on OS X, is shown in the top left corner
of Figure 2. GCC is used in a variety of open-source
projects, making it an important tool to consider.
State 0 is unusual in that it has a high percentage

of observing SHL. SHL is the second most likely ob-
served opcode (16% probability), but is not frequently
observed in the other HMMs. There is also a low
probability of staying in this state, combined with the
highest probability of transitioning to the MOV state
for any of our models, suggesting that state 0 is more
transitional than the PUSH states of the other HMMs.
Our second compiler is the Clang compiler front

end for LLVM, using version 2.0. Clang is a more
recent tool than GCC, but it has also been used for
a number of open-source projects. The model for the

Clang compiler is in the top right corner of Figure 2.
State 7 is dominated by the observations MOVSD,

MOVSX, and MOVZX. Collectively, these operations
are observed with a 94% probability. In contrast, these
three operations are only observed with a combined
22% probability in state 3 of the GCC HMM, and do
not occur with any great frequency in the other models.
Transitions to state 7 are lower than equivalent transi-
tions for the other HMMs. However, the probability of
staying in this state is noticeably higher.
Another unusual characteristic of the Clang model

is that SUB is a common observation in state 4, its
PUSH state. For the other HMMs, SUB is usually a
significant observation in the miscellaneous state.
The Minimalist GNU for Windows (MinGW) [20] is

a port of GCC to Windows. We use version 4.6.1. We
are particularly interested in MinGW since it allows to
compare the models generated by the same compiler
on two different platforms. The model for the MinGW
compiler is in the bottom left corner of Figure 2.
The most unusual aspect of the MinGW code is the

use of PUSHF and POPF. These opcodes are never
observed in the data for the other compilers; their
presence alone strongly suggests that the code was
compiled with MinGW. Another difference is the high
probability of OR opcodes being used, reflected in the
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high probability of that opcode in state 8. This quality
is shared with the Turbo C compiler, perhaps indicating
this feature is characteristic of Windows executables.
Borland’s Turbo C [15], version 2.01, is popular

for Windows. Additionally, Borland’s Turbo Assem-
bler (TASM) is a common choice for hand-written
assembly programs. We contrast the HMM for Turbo
C with the TASM HMM in Section 5.
The model for the Turbo C compiler is in the bottom

right corner of Figure 2. The HMM for Turbo C is
unusual in that its MOV state, state 13, has 100%
probability of being the initial state. In our data, a
MOV operation is the first opcode in all programs.
The Turbo C compiler also seems to use a much

greater variety of opcodes, reflected in the high ob-
servations of ‘other’ opcodes in the different states.
Furthermore, state 15 includes XCHG and WAIT as
two of its most likely opcodes, which did not appear
at all in the disassembled code for the other compilers.

3.3. Identifying compiler

While the HMMs for each of the 4 compilers have
a similar structure, they nonetheless can identify the
compiler used with a high degree of accuracy. Our
tests use additive smoothing [4] on the probabilities
for each observation. No smoothing is applied to the
transition probabilities or to the initial state probabili-
ties. Probabilities are not normalized for length, since
it is not necessary with the dueling HMM strategy.
Test data consists of 92 separate programs: 24 were

compiled with GCC on OSX, 24 with CLANG on
OSX, 21 with Turbo C on Windows XP, and 23 with
MinGW on Windows XP. We use HMMs built with 2
to 11 states. More states get more accurate results, but
with a significant performance penalty. When scoring
(i.e., the forward algorithm) the work is on the order
of N2 ∗ T multiplications, where N is the number of
states and T is the number of observations. Therefore,
we would like to use as few states as possible.
The is only one false identification for HMMs with

2 or 3 states; there are no errors with additional states.

Errors Accuracy
2 hidden states 1/92 0.99
3 hidden states 1/92 0.99
4+ hidden states 0/92 1.00

4. Progression of States

An interesting aspect of HMMs lies in uncover-
ing the hidden states to determine what fundamental
properties they reveal of the thing being modeled.

This section shows the break down of opcodes as the
number of hidden states increases for the GCC HMM.
In all models discussed below, state 0 was the initial

state with 100% probability. We ignore the transition
probabilities; while this is important information, we
focus on the opcodes used in order to gain a richer
understanding of the semantics behind our HMMs.
With 2 states, CALL and MOV are broken into

separate states as the most likely observations. The
probabilities for different opcodes are shown below:

State Observation probabilities
0 : JNS(0.00) JNZ(0.03) JS(0.00) JZ(0.01) JMP(0.08)

: LEA(0.11) MOV(0.56) POP(0.02) PUSH(0.08)
: REP(0.00) RETN(0.01) SAR(0.00) SHL(0.02)
: SHR(0.00) SUB(0.02) TEST(0.02) XOR(0.01)
: LEAVE(0.01) CWDE(0.00) MOVSD(0.01)
: MOVSX(0.00) MOVZX(0.01) SETNZ(0.00)
: SETZ(0.00)

1 : ADD(0.19) AND(0.02) CALL(0.47) CLD(0.00)
: CMP(0.15) DEC(0.02) IDIV(0.00) IMUL(0.00)
: INC(0.07) JA(0.00) JB(0.00) JBE(0.00) JG(0.01)
: JGE(0.01) JL(0.01) JLE(0.03)

With 3 states, a new state emerges with high proba-
bilities for observing SUB, SHL, TEST, and LEAVE,
though no one opcode seems to dominate.

State Observation probabilities
0 : SAR(0.02) SHL(0.22) SHR(0.00) SUB(0.24)

: TEST(0.15) XOR(0.05) LEAVE(0.13)
: CWDE(0.00) MOVSD(0.08) MOVSX(0.02)
: MOVZX(0.07) SETNZ(0.00) SETZ(0.00)

1 : JNS(0.00) JNZ(0.03) JS(0.00) JZ(0.01) JMP(0.09)
: LEA(0.12) MOV(0.62) POP(0.02) PUSH(0.09)
: REP(0.00) RETN(0.01)

2 : ADD(0.19) AND(0.02) CALL(0.47) CLD(0.00)
: CMP(0.15) DEC(0.02) IDIV(0.00) IMUL(0.00)
: INC(0.07) JA(0.00) JB(0.00) JBE(0.00) JG(0.01)
: JGE(0.01) JL(0.01) JLE(0.03)

With 4 states, the PUSH state emerges, separated from
the MOV state.

State Observation probabilities
0 : POP(0.15) PUSH(0.58) REP(0.00) RETN(0.10)

: SAR(0.02) SHL(0.16) SHR(0.00)
1 : JNS(0.00) JNZ(0.03) JS(0.00) JZ(0.02) JMP(0.10)

: LEA(0.14) MOV(0.71)
2 : ADD(0.19) AND(0.02) CALL(0.47) CLD(0.00)

: CMP(0.15) DEC(0.02) IDIV(0.00) IMUL(0.00)
: INC(0.07) JA(0.00) JB(0.00) JBE(0.00) JG(0.01)
: JGE(0.01) JL(0.01) JLE(0.03)

3 : SUB(0.32) TEST(0.20) XOR(0.07) LEAVE(0.18)
: CWDE(0.00) MOVSD(0.11) MOVSX(0.02)
: MOVZX(0.09) SETNZ(0.00) SETZ(0.00)

From our data, it appears that the two most sig-
nificant operations are CALL and MOV. In all of the
HMMs that we develop over the course of this paper,
including the HMMs for hand-written assembly and
virus code that we develop later, CALL and MOV
observations are always in separate states.
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Figure 2: HMMs for GCC, Clang, MinGW, and Turbo C Compilers from Disassembled Code
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GCC Observation Probabilities
0 1 2 3

PUSH 58% MOV 71% CALL 47% SUB 32%

SHL 16% LEA 14% ADD 19% MOV* 22%

POP 15% JMP 10% CMP 15% TEST 20%

RETN 10% J* 5% J* 8% LEAVE 18%

Other 1% INC 7% XOR 7%

Other 4% Other 1%

Clang Observation Probabilities
4 5 6 7

PUSH 47% MOV 81% CALL 46% MOVSD 76%

POP 21% JMP 8% CMP 22% MOVSX 14%

SUB 16% LEA 7% ADD 21% SET* 5%

RETN 8% J* 4% J* 7% MOVZX 4%

Other 8% Other 4% Other 1%
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0.34MinGW Observation Probabilities

8 9 10 11

PUSH* 43% MOV 70% CALL 44% TEST 37%

POP* 21% J* 17% CMP 27% SUB 27%

RETN 19% JMP 8% ADD 12% LEAVE 19%

OR 11% LEA 5% J* 7% XOR 8%

Other 6% Other 10% Other 7%

Turbo C Observation Probabilities
12 13 14 15

PUSH 39% MOV 63% CALL 21% XCHG 19%

POP 31% JMP 16% CMP 19% WAIT 19%

RETN 9% J* 17% J* 16% SUB 18%

OR 9% Other 4% ADD 11% SHL/SHR 16%

Other 12% Other 33% Other 28%

SET*: SETE, SETNE, SETL, SETLE, SETZ, and SETNZ
J*: JA, JE, JG, JGE, JL, JLE, JNE, JAE, JB, JBE, JP, JS, JNS, JZ, and JNZ.

MOV*: MOVSD, MOVSX, and MOVZX.
PUSH*/POP*: PUSH/POP and PUSHF/POPF.

Note: Due to rounding, probabilities do not always add up to 100%
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Figure 3: HMM for Hand-Written Assembly
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J* 76% MOV 29% AND 49% INSB 38%

INT 11% PUSH/PUSHF 29% CALL 26% XOR 19%

IMUL 7% JMP/J* 12% CMP 14% BOUND 14%

Other 5% OR 9% ADD 6% SUB 12%

Other 21% Other 5% Other 17%

Initial State Probability
State Number Probability

0 0%

1 87%

2 11%

3 6%

5. Hand Written Assembly

We now compare HMMs for compiled code with
hand-written assembly code. While the models are
noticeably different, our tool is unable to reliably
distinguish between programs built from hand-written
assembly and compiled code. We use Borland’s Turbo
Assembler (TASM) due to its use in the build processes
for many of the viruses found on http://vxheavens.com,
including the Next Generation Virus Construktion Kit
(NGVCK) and the Metamorphic Permutating High-
Obfuscating Reassembler (MetaPHOR) virus [10]. Our
model is built from 46 sample assembly programs
taken from assembly programming tutorials.
Figure 3 shows the HMM for hand-written assembly

code with 4 hidden states. The model is strikingly dif-
ferent from the HMMs for compiled code. While those
HMMs always begins in the same state with 100%
probability, The HMM for hand written assembly has
no single initial state. There is also a far greater variety
of opcodes used in hand-written assembly. While the
division of the opcodes into different states follows
some of the same patterns as the HMMs for the
compilers, there are some notable differences.
The MOV state and the PUSH state are combined.

A number of jump instructions instead have their own
state (State 0). CALL and CMP opcodes are still in
their own state, but there is also a high amount of
AND instructions. State 3 roughly corresponds to the
miscellaneous state of the compiler HMMs, but it
includes a high number of INSB instructions.
Our test data includes 10 hand-written assembly

programs along with the 92 compiled programs used
in previous sections. The compiled C programs are
successfully identified, even with as few as 2 states.

The hand-written assembly programs are not identified
as successfully as shown below:

Errors Accuracy
2 hidden states 4 0.60
3 hidden states 5 0.50
4 hidden states 4 0.60
5-7 hidden states 3 0.70

Given the striking difference in the HMM generated
for hand-written assembly, the poor results are sur-
prising. Perhaps some assembly programmers follow
a similar pattern as compilers.

6. Identifying Code Generated with Virus
Construction Kits

Virus construction kits (VCKs) make it easy for any-
one with minimal technical skills to create a virus, thus
lowering virus creation from an art for the technical
elite to a paint-by-the-numbers craft open to anyone
with a malicious intent. We use the Next Generation
Virus Construktion Kit (NGVCK) for our tests due
to its advanced techniques [23], performing additional
tests with the Second Generation Virus Generator (G2)
and the Mass Code Generator (MPCGEN).
The Next Generation Virus Construktion Kit creates

viruses that are automatically morphed, making it
difficult to detect all variants with traditional tech-
niques [23]. It uses several source-morphing tech-
niques, including random function ordering, junk code
insertion, and encryption [23]. The HMM for the
NGVCK virus family is shown in Figure 4. The model
is built from 200 sample virus programs that have been
compiled with Turbo C. It follows a pattern similar to
the compiled programs, with a PUSH state, a MOV
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Figure 4: HMM for NGVCK virus family
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state, and a CALL state. Nonetheless, there are some
noticeable distinctions. A striking difference is the
high use of the NOP opcode in state 0, which hardly
appeared in any of the other HMMs. Additionally, as
with the TASM HMM, there is no single starting state.
We use 5-fold cross validation to increase our sam-

ple size. The sample virus programs are divided into
5 equal groups; each slice is then tested against a
model built from the other 4 slices. Our tests include
225 NGVCK-infected files divided up into groups
of 45, with 92 benign compiled programs and 10
hand-written assembly programs included in each test.
For additional validation of our approach, we also
test 50 files infected with the G2 VCK and 50 files
infected with the MPCGEN VCK, both divided into
5 groups of 10. Our tests were performed with 2-4
states. In contrast to the results in identifying compilers
(Section 3.3), 2-state models identify nearly as many
models, and suffer from fewer false-positives.
The results for the dueling HMM strategy used

with 2-state HMMs to identify NGVCK-infected files
are shown below. No benign compiled programs are
flagged as infected, but some of the hand-coded as-
sembly programs are mistakenly identified as viruses.
Tests with 3-state HMMs identified fewer viruses; 4-
state HMMs identified slightly more, but resulted in
noticeably more false positives.

Group Viruses identified False positives
NGV CK − 1 41/45 0/102
NGV CK − 2 43/45 2/102
NGV CK − 3 42/45 0/102
NGV CK − 4 40/45 0/102
NGV CK − 5 29/45 0/102

Total 195/225 (0.87) 2/510 (< 0.01)

The following results for G2 with 2-state HMMs

show that the dueling HMM approach successfully
identifies every virus with no false positives.

Group Viruses identified False positives
G2− 1 10/10 0/102
G2− 2 10/10 0/102
G2− 3 10/10 0/102
G2− 4 10/10 0/102
G2− 5 10/10 0/102
Total 50/50 (1.00) 0/510 (0.00)

The story for MPCGEN-infected files is similar;
When using 2-state HMMs, all infected files are
identified; 5 benign hand-written assembly files are
identified as viruses. Since both G2 and MPCGEN
are somewhat less sophisticated than NGVCK [24],
the strong performance of the dueling HMM model
strategy is perhaps not surprising.

Group Viruses identified False positives
MPCGEN − 1 10/10 1/102
MPCGEN − 2 10/10 1/102
MPCGEN − 3 10/10 1/102
MPCGEN − 4 10/10 1/102
MPCGEN − 5 10/10 1/102

Total 50/50 (1.00) 5/510 (0.01)

7. Metamorphic Virus Detection

Metamorphic viruses are difficult to detect with tra-
ditional scanning approaches. The virus code is obfus-
cated rather than merely encrypted. The Win32/Simile
virus, sometimes known as Win32/Etap, is one of the
more advanced metamorphic viruses. It is built with
the Metamorphic Permutating High-Obfuscating Re-
assembler (MetaPHOR) engine [10]. Roughly 90% of
the virus code relates to its metamorphic behavior [23].
Our initial training data consists of 49 programs

compiled with MinGW and infected by MetaPHOR.
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Figure 5: HMM for MetaPHOR Infected Files
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Figure 5 shows the model generated from the
MetaPHOR-infected files. It has some noticeable simi-
larities with the MinGW model. There is a CALL state
in both models with a high probability of observing
CMP and ADD opcodes. State 4 is dominated by
observations of TEST, SUB, and XOR in both HMMs.
Like the MinGW model, the metaphor model begins
in state 0 with 100% probability. The main distinction
between the two models is in the observations of
jump instructions. The MinGW model has a distinct
MOV state and PUSH/POP state, while the MetaPHOR
model combines these two states and breaks out jump
instructions into their own state. In this feature, it more
closely resembles the HMM for hand-written assembly.
Our test data includes 60 programs divided into

groups of 12 for use in 5-fold cross validation. 2-
state HMMs identify 87% of the MetaPHOR-infected
programs with no false positives. Additional states do
not identify additional infected programs, and mark
some benign MinGW files as viruses, suggesting that
2-state HMMs are ideal for virus identification.

Group Viruses identified False positives
MetaPHOR− 1 11/12 0/102
MetaPHOR− 2 10/12 0/102
MetaPHOR− 3 9/12 0/102
MetaPHOR− 4 11/12 0/102
MetaPHOR− 5 11/12 0/102

Total 52/60 (0.87) 0/510 (0.00)

8. Alternate HMM Construction

Previous research [24] has focused on the use of
opcodes, but richer semantic information is available
within the assembly code. On the other extreme, cer-
tain opcodes dominate in the model. Using less data
might be as effective and more efficient.

Labels provide information about a program’s struc-
ture. We treat the existence of a label as if it were
another op code. Unforunately, considering labels does
not improve the quality of our models, identifying the
correct compiler with no greater probability.

Errors Accuracy
2 hidden states 1/92 0.99
3 hidden states 2/92 0.98
4-6 hidden states 0/92 1.00

Identification of hand-written assembly and viruses is
comparable as well, suggesting that considering labels
is not beneficial.
For a different approach, we consider only the most

frequently observed opcodes. By ignoring less com-
mon observations, our analysis can be more efficient.
With a 2-state HMM using only the MOV and

CALL opcodes the correct model is chosen with 0.67
accuracy. The Turbo C code, however, is predicted with
no more success than random guessing.
Compiler Test files Correctly identified Accuracy
GCC 25 17 0.68
Clang 25 21 0.84
MinGW 23 20 0.87
Turbo C 21 5 0.24
Total 94 63 0.67

Including more data improves the accuracy. We limit
our observations to those opcodes that account for 20%
or more of the observations for any state, improving
the accuracy to more than 90%.
Compiler Test files Correctly identified Accuracy
GCC 25 24 0.96
Clang 25 18 0.72
MinGW 23 23 1.00
Turbo C 21 21 1.00
Total 94 86 0.91
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Unfortunately, identifying hand-written assembly
and viruses is less successful. Of the 10 programs in
hand-written assembly, only two are correctly identi-
fied. None of the NGVCK programs are correctly iden-
tified, and one of the hand-written assembly programs
is flagged as an NGVCK-infected file. In one test
of 12 MetaPHOR-infected programs, 10 are correctly
identified but the number of false positives increases.
Viruses and hand-written assembly use more opcodes
than compiled programs; the additional opcodes appear
to be important for accurate identification.

9. Conclusions and Future Work

Hidden Markov models show promise as a tool for
virus identification, particularly in identifying meta-
morphic viruses. In this paper, we reveal some of the
details about the hidden states of the HMM models,
allowing for a richer understanding of the critical prop-
erties of the underlying models. Furthermore, we de-
velop the dueling HMM strategy, leveraging specifics
about compiled code for more precise analysis. In
future work, we will explore how we may bias the
dueling HMM strategy in order to fine-tune the trade-
off between false-positives and false-negatives.
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