Creativity in Teams: An Examination of Team Accuracy in the Idea Evaluation and Selection Process

Victoria Kennel, Roni Reiter-Palmon, Triparna de Vreede, GJ de Vreede
The Center for Collaboration Science, University of Nebraska at Omaha
{vkennel; rreiter-palmon; tdevreede; gdevreede}@unomaha.edu

Abstract

Organizations are increasingly utilizing teams to develop creative solutions to solve problems. However, the generation of creative ideas alone may not be enough to ensure innovative solutions are implemented: teams must actively and effectively evaluate ideas prior to selecting new products or solutions to solve a problem. We followed a model of idea evaluation and selection and examined the relationships between team solution evaluation accuracy and the accurate selection of optimal solutions to solve a problem. Teams read a realistic story problem, evaluated ten possible solutions for quality and originality, and selected the best solution to solve the problem. Findings indicate that team accuracy in solution quality evaluations relates to the accurate selection of a high quality solution, while team accuracy in solution originality evaluations relates to the accurate selection of a creative solution. Implications for theories of team idea evaluation and selection and research are presented.

1. Introduction

A recent report from IBM indicated that creativity is the most important and influential factor in gaining a competitive advantage in today’s complex and volatile economy [16]. Consequently, modern organizations are increasingly focusing their efforts on creativity and innovation as they strive to survive and remain competitive in rapidly changing and uncertain environments. Creativity is often defined as the production of original (i.e., novel or unique) and high quality (i.e., socially valued, appropriate or feasible, and useful) ideas, solutions, and products [1, 2, 26, 44]. Organizations frequently consider creative and innovative solutions when faced with a complex and ambiguous problem that lacks clear resources, goals, and information, as these types of problems require new approaches to develop successful products, ideas, and solutions [28, 29].

Organizations regularly face highly complex problems that no single individual can effectively solve with their knowledge, expertise, or resources alone [21]. Thus, organizations are developing and utilizing project teams where employees are expected to work collectively on tasks, provide multiple perspectives and unique sources of information, and assist in a decision making or problem solving process [47]. Accordingly, organizational teams are frequently tasked with solving complex problems [8, 9] and developing and facilitating organizational change, creativity, and innovation [49, 50].

Despite the clear importance of creativity and innovation to organizational success and the widespread use of teams in organizations, we have yet to fully explore and understand many aspects of team creativity and innovation. Much of the creativity research focuses on understanding factors that predict and influence individual’s creativity, such as personality, cognitive ability, mood, and motivation, [3, 4, 7, 11, 20]. Additionally, creativity researchers have developed a number of cognitive models in an effort to understand the cognitive processes that underlie creative activity at the individual level [e.g., 28, 37, 48] All emphasize five core processes: problem identification and construction, information search, idea generation, idea evaluation and selection, and implementation [30]. In problem identification and construction individuals detect the presence of a problem and construct representations of the problem and its goals and constraints. Individuals then search for information needed to generate or brainstorm a wide variety of possible solutions. Subsequently, individuals forecast possible outcomes and implications of implementing any given solution and evaluate the solutions in relation to the goals, standards, and performance requirements necessary for effective implementation. Individuals then consider these evaluative outcomes and select a solution to implement to solve the problem.
Models of the creative cognitive process, such as those described above, depict the cognitive process *individuals* use to engage in creative behavior. What is unknown is whether the cognitive processes that occur when individuals engage in creative activity portray the processes that *teams* use to engage in creative activity [29]. As teams are increasingly tasked with solving complex problems and developing creative products and solutions [8, 49, 50], it is critical that we explore the generalizability of individual level creative cognitive process models to team creative cognitive processes and creative performance [12, 22, 29].

The research that does examine creative processes in teams focuses mainly on the idea generation or brainstorming phase [32]. In this stage teams gather to brainstorm and generate possible new products or ideas that could be considered to solve a problem. From this research we have learned of the benefits of information and perspective sharing in generating unique ideas [15] and the pitfalls of groupthink that may limit creativity [17, 18, 19]. Although this information is clearly valuable to the study of team creativity, idea generation is only one of several pieces to the team creativity and innovation puzzle. The generation of many novel or unique ideas alone does not necessarily ensure the implementation of a successful and creative outcome. If organizations desire to implement novel, effective, and successful solutions, individuals and teams must actively consider the potential outcomes of implementing ideas and how these ideas fulfill or meet desired performance standards prior to selecting optimal solutions and products for implementation.

We know very little about the critical cognitive processes that occur *after* teams generate ideas, such as the evaluation and selection of creative solutions [24]. Idea evaluation reflects a judgment or assessment of the degree to which an idea or solution is instrumental in achieving specific desirable outcomes. Those solutions judged to be more instrumental are likely to receive more attention and consideration when selecting solutions to solve a problem than those judged to be less instrumental. Relatively few studies have focused on the process of idea evaluation at both the individual and the team levels [6, 36, 37], but not because this process is considered unimportant. The idea evaluation and selection process is critical to innovative success in organizations as individuals and teams regularly produce many ideas to solve a single problem, but only a minority of these ideas is ever implemented to effectively solve a problem [45]. As evaluations seem to precede and guide the process of selecting ideas to implement to solve a problem [5], if the evaluation process is less than optimal, less than optimal ideas are likely to be chosen [10]. Clearly, this outcome is undesirable to many organizations as they strive for the selection of optimal or desirable products and solutions. Consequently, the relationship between team accuracy in evaluating solutions and the selection of desirable and optimal solutions must be explored.

Therefore, the purpose of this paper was to explore the relationship between the idea evaluation and selection process in a team setting. We describe a model of the cognitive process of creative idea evaluation and selection and the importance of accurate assessments in the evaluation and selection process. We then tested tenets of this model in a research study and examined the relationship between team solution quality and originality evaluation accuracy and team accuracy in selecting optimal solutions, namely, high quality and truly creative (i.e., high quality and original) solutions.

2. Idea Evaluation and Selection Model

Mumford, Lonergan, and Scott [27] developed a theoretical model of the idea evaluation and selection process that specifies the mental processes individuals use to evaluate and select ideas. The model also considers the context and situation in which individuals evaluate and select potential solutions to solve a problem. This model was primarily proposed to describe the idea evaluation and selection process at the individual level; however, in this study we applied and examined the proposed evaluation and selection process in a team setting. While some suggest that individuals and teams passively evaluate ideas [46], Mumford et al. [27] argue that individuals and teams must actively engage in the process in order to effectively evaluate ideas and select optimal solutions. Mumford et al. [27] present three major activities in their idea evaluation and selection model: forecasting the possible implications and outcomes of implementing any given solution, evaluating the viability and instrumentality of a solution in relation to explicit standards, and the selection, rejection, or revision of a solution for implementation.

Forecasting is the first stage of Mumford et al.'s [27] idea evaluation and selection model. In the forecasting process individuals or teams make predictions about potential outcomes or consequences of implementing any given solution. Effective forecasting requires active reflection on a variety of possible solution implementation outcomes and their relation to contextual solution implementation goals and performance requirements. Teams may further evaluate and consider for implementation those solutions forecasted to effectively satisfy the implementation goals and performance requirements. On the other hand, if teams predict that a solution fails
to satisfy the implementation goals and performance requirements, they may reject the solution without further consideration, ignore the forecasted outcomes and implications and further consider the solution, or actively consider the problematic implementation outcomes and revise the solution to better meet the implementation goals and performance requirements.

In addition to forecasting implementation outcomes, Mumford et al. [27] suggest that individuals or teams subsequently evaluate how well the characteristics of each potential solution fit the context-specific standards required for effective solution implementation. It is critical for teams to explicitly define, communicate, and understand the specific standards and criteria used to formally evaluate solutions. Given the variety of values, preferences, and personal standards held by each team member, if team members do not fully understand the specified standards guiding the team evaluation process, the standard-specific evaluations of each solution may be less than accurate. Examples of evaluation standards include cost-effectiveness, implementation feasibility, quality, or originality. Teams may further consider for implementation those solutions that satisfy the evaluation standards. Similar to the forecasting process, if teams’ solution evaluations indicate that a solution fails to meet the evaluation standards, they may reject the solution without further consideration, ignore the solution evaluations and further consider the solution for selection, or revise the solution to more effectively meet the solution evaluation criteria.

Finally, Mumford et al. [27] propose that the forecasted implementation outcomes and solution evaluations guide the selection of a solution for implementation. Although Mumford et al. [27] do not identify exactly how individuals or teams should use the forecasted and evaluative outcomes to select a solution, the model implies that we consider and use the forecasted and evaluative outcomes to select a solution, the model implies that we consider and use the forecasted and evaluative outcomes to select a solution for selection, or revise the solution to better meet the implementation goals and performance requirements. Therefore, the purpose of this study was to directly examine the relationship between two tenets of the Mumford et al. [27] idea evaluation and selection model in a team setting: standard-specific solution evaluations and the selection solutions to solve a problem. More specifically, we examined how team solution quality and originality evaluation accuracy related to the accurate selection of optimal solutions to solve a problem (see Figure 1). In Hypothesis 1a we anticipated that team solution quality evaluation accuracy would positively relate to the accurate selection of a high quality solution to solve a problem; similarly, in Hypothesis 1b we anticipated that team solution quality evaluation accuracy would positively relate to the accurate selection of a creative (i.e., high in quality and original) solution to solve a problem. In Hypothesis 2a we anticipated that team solution originality evaluation accuracy would negatively relate to the accurate selection of a high quality solution to solve a problem; whereas, in Hypothesis 2b we anticipated that team solution originality evaluation
accuracy would positively relate to the accurate selection of a creative solution to solve a problem.

Figure 1. Proposed relationships between team solution quality and originality evaluation accuracy and accurate selection of optimal solutions.

3. Method

3.1 Participants

The study sample consisted of 168 (72 males, 93 females, 3 did not report) undergraduate students, randomly assigned into 42 teams of four, enrolled in a psychology or business course at a midwestern University. Participants were 19 to 54 years of age (M = 22.92, SD = 5.07, 6 did not report) with about two-thirds (60.5%) of the participants between ages 19-22, 31.7% were ages 23-29, and 8% were 30 or older. Within the sample, 15.2% were freshman, 28% were sophomores, 20.7% were juniors, 34.8% were seniors, 1.2 percent listed college status as “other,” and four did not report. In addition, 70.7% of the sample was Caucasian, 12.2% were African American, 6% were Hispanic/Latino, 4.2% were Asian American, 1.8% were American Indian, 4.8% noted their ethnicity fell into another category, and four did not report.

3.2 Procedure

Upon arrival at the laboratory, student participants were randomly assigned into teams of four. Each team completed the study in separate laboratory rooms. Participants in each team were first instructed read an ill-defined, realistic story problem called “Becky’s Problem.” Becky’s Problem describes a complex scenario in which a college student named Becky must deal with a co-worker conflict that may impact her work life, financial status, living situation, and friendship with the co-worker.

Ten solutions to Becky’s Problem, generated by students from a previous study, were presented to each team. Teams were instructed to first read through all 10 solutions and then evaluate each solution for its level of quality and originality, respectively, on a 5 point scale, with the assistance of a rubric. The rubric defined the criteria associated with solution quality (i.e., completeness and effectiveness) and solution originality (i.e., novelty, imagination, and structure). In addition, the rubric provided information regarding the level of completeness and effectiveness associated with very low quality (1) to very high quality (5) solutions and the level of novelty, imagination, and structure associated with very unoriginal (1) to very original (5) solutions. The 10 presented solutions, and their quality and originality, were held constant across teams. Teams received two solutions each with the following characteristics: high quality and high originality, high quality and low originality, high originality and low quality, low quality and low originality, and medium quality and medium originality. In addition, the content of the selected solutions reflected the range of the content present in the bank of generated solutions.

After evaluating the solutions, teams were instructed to select the one “best” solution to solve Becky’s Problem. The term “best” was not further defined, allowing the teams to use their own interpretations of the “best” solution, in terms of the level of solution quality and originality, to solve the problem.

3.3 Team Idea Evaluation Accuracy

Two independent measures were examined: the accuracy of team solution quality evaluations for the 10 evaluated solutions, and the accuracy of team solution originality evaluations for the 10 evaluated solutions. Recall that the 10 solutions provided to the teams for evaluation were selected from a pool of solutions generated by students from a previous study. In this previous study, all of the solutions were evaluated independently for quality (i.e., completeness and effectiveness) and originality (i.e., novelty, imagination, and structure) by trained raters, and raters were blind to the study conditions. This method for assessing creativity has been used extensively in previous research [e.g., 14, 25, 31, 43]. The inter-rater reliability of the rater (further called “experts” in this paper) originality ratings and quality ratings, calculated from the original set of solutions, were good with an \(r_{wg} \) of .81, and an ICC of .81, \(F(363,726) = 5.51, p < .05 \), and an \(r_{wg} \) of .78, and an ICC of .87, \(F(364,728) = 7.62, p < .05 \), respectively.

To examine each team’s overall average level of accuracy in evaluating the 10 solutions for quality and originality, we calculated the mean absolute value of the difference between each team’s evaluation score from the expert evaluation score separately for the quality and originality ratings. Greater absolute values of these accuracy indices indicate that the teams’ solution quality or originality evaluations were less accurate than the expert evaluations; whereas smaller absolute values of these accuracy indices indicate that
the teams’ solution quality or originality evaluations were more accurate than the expert evaluations.

3.4 Team Solution Selection Characteristics and Accurate Selection of Optimal Solutions

We examined the dependent measures, the nature of the solution the team selected to solve the problem, in two ways. First, we examined the level of quality and originality of the solution that each team selected to solve the problem based on the team’s quality and originality evaluations of the selected solution. This assessment provided a descriptive snapshot of the characteristics of the solutions that teams selected based on the team’s solution evaluations. However, given that teams were instructed to select the best solution to solve the problem, we anticipated little variability and significant range restriction in the level of quality, and potentially originality, for the solution the team selected. In other words, we anticipated that teams would select solutions that they rated as higher in quality and originality as these types of solutions are likely to reflect the “best” possible problem solutions.

Consequently, we also examined the nature of the solution that each team selected to solve the problem based on the expert ratings of the solution the team selected to solve the problem. In other words, we examined if teams accurately selected an “optimal” solution, that is, a solution that is high quality (i.e., appropriate and useful in solving the problem) or “creative” (i.e., high in quality and original; appropriate and useful but also novel or unique in solving the problem), by examining the expert ratings of quality and originality for the solution the team selected to solve the problem. Recall that of the ten solutions presented to the teams, two each fell into the following categories based on the expert rater evaluation scores: high quality and high originality, high quality and low originality, high originality and low quality, low quality and low originality, and medium quality and medium originality. To examine the accurate selection of optimal solutions we coded the nature of the solution that the team selected, based upon the expert ratings of the selected solution, into two binary dichotomous variables: selection of a high quality solution (1) or not (0), and selection of a creative solution (1) or not (0). Thus, two dependent measures were examined: the accurate selection of a high quality solution based upon expert solution ratings, and the accurate selection of a creative solution based upon expert solution ratings.

4. Results

4.1 Team Solution Quality and Originality Evaluation Accuracy

First, we examined if there were differences in team’s abilities to accurately evaluate solution quality and originality. A paired samples t-test indicated no significant differences in average team quality (M = .88, SD = .29) and originality (M = .93, SD = .32) evaluation accuracy, t(41) = -.83, ns. Thus, although we thought that teams would be better at recognizing solution quality and not as good at recognizing solution originality, it was not necessarily easier for teams to evaluate solution quality or originality for the 10 solutions.

4.2 Team Solution Selection Characteristics

We then examined the quality and originality of the solutions the teams selected based upon the team’s solution evaluations. Two teams failed to select a solution to solve the problem; thus, the analysis of team solution selection was based upon 40 teams. All teams selected a solution that, based upon their evaluations, was either high (27.5%) or very high (72.5%) in quality. This was anticipated as teams received instructions to select the best solution to solve the problem, and instructions to select the best solution often result in the selection of a feasible and appropriate solution [34]. However, teams demonstrated variability in their selection of original solutions, with 30 percent of teams selecting a solution they evaluated as unoriginal (10%) or neutral (20%), whereas 70 percent of teams selected a solution they evaluated as original (32.5%) or very original (37.5%). This was unexpected as instructions to select the best solution typically result in the selection of a high quality solution alone rather than a solution that is both high in quality and original [34].

Additionally, on average teams selected a solution they rated as both high in quality (M = 4.73, SD = .45) and original (M = 3.98, SD = 1.00). However, the average team solution quality and originality evaluation scores for the solutions that they selected deviated approximately one point (on a scale from one to five) from the scores of the expert raters. This indicates that, within the solution that the team selected, there is some variability in the accuracy of solution quality and originality evaluations. Although teams may have selected a solution they thought was high in quality, or high in both quality and originality, their selection of the “best” solution may have been
less than accurate because of the potential lack of accuracy in solution quality and originality evaluations.

4.3 Team Accurate Selection of Optimal Solutions

When examining team solution selection accuracy from the perspective of selecting an optimal solution, on the basis of the expert evaluations, a different perspective emerges. Twenty percent of teams (n = 8) selected a solution evaluated by expert raters as creative, 35% of teams (n = 14) selected a solution evaluated by expert raters as high quality alone, no teams selected a solution evaluated by expert raters as highly original alone, and 45% of teams (n = 18) selected a solution that did not fit into these categories (i.e., the solutions were of moderate or low quality and originality and thus not considered optimal solutions). Thus, although all of the teams selected solutions they rated as high quality or high quality and original, only about half (55%) of the teams in this sample accurately selected a solution that would be considered optimal by experts in solving the problem.

4.4 Team Solution Quality and Originality Evaluation Accuracy and Accurate Selection of Optimal Solutions

To examine if team solution evaluation accuracy related to the accurate selection of optimal solutions, we examined correlations between the average team solution quality and originality evaluation accuracy and the accurate selection of a high quality or create solution (see Table 1). In support of Hypothesis 1a, teams who were more accurate in their average solution quality evaluations were also significantly more likely to accurately select a high quality solution on the basis of the expert solution ratings, \(r = -0.39, p = 0.03 \); however, the average team solution originality evaluation accuracy had essentially no relationship with the accurate selection of a high quality solution on the basis of the expert solution ratings. Consequently, Hypothesis 1b was not supported. In contrast, in support of Hypothesis 2a, teams who were more accurate in their average solution originality evaluations were also significantly more likely to accurately select a creative solution on the basis of the expert solution ratings \(r = -0.28, p = 0.05 \), one-tailed; however, team solution quality evaluation accuracy had essentially no relationship with the accurate selection of a creative solution on the basis of the expert solution ratings. Accordingly, Hypothesis 2b was not supported.

These findings indicate that accuracy in evaluating potential problem solutions for specific criteria may subsequently relate to the accurate selection of an optimal solution to solve a problem. In this case, when teams were more accurate in assessing solution originality they were also more likely to accurately select an optimal solution that was truly creative; that is, a solution that was both unique or novel and appropriate or useful. However, when teams were more accurate in assessing solution quality they were more likely to accurately select an optimal solution that was high in quality alone.

<table>
<thead>
<tr>
<th>Quality Evaluation Accuracy</th>
<th>Originality Evaluation Accuracy</th>
<th>Selected Creative Solution</th>
<th>Selected High Quality Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Evaluation Accuracy</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Originality Evaluation Accuracy</td>
<td>.18</td>
<td>--</td>
<td>.28*</td>
</tr>
<tr>
<td>Selected Creative Solution</td>
<td>.00</td>
<td>-.28*</td>
<td>--</td>
</tr>
<tr>
<td>Selected High Quality Solution</td>
<td>-.39*</td>
<td>.02</td>
<td>--</td>
</tr>
</tbody>
</table>

Note. N = 42 for quality and originality evaluation accuracy. N = 40 for selected creative and high quality solution. *p < .05.

5. Discussion and Conclusions

As organizations increasingly consider creative and innovative approaches to solving problems there is a significant need to understand the processes that teams use to evaluate and select creative products and solutions and the accuracy of the evaluative and selection outcomes. Models and research on the idea evaluation and selection process primarily examines idea evaluation processes accuracy at the individual level [e.g., 14, 35, 41, 42], and the studies of idea evaluation and selection identified at the team level do not directly examine the evaluation process [10, 33]. Therefore, in this paper we examined the relationship between team solution quality and originality evaluation accuracy and the accurate selection of optimal solutions to solve a problem.

This study demonstrated two important findings in relation to team idea evaluation and selection. First, based upon their own evaluations of solution quality and originality, every team selected a “best” solution to solve the problem that the team evaluated as either high or very high in quality, with almost two-thirds of
the teams also selecting a solution they evaluated as original or very original. Thus, the team’s solution quality and originality evaluations seem to have guided their selection of a “best” solution. This supports the notion that standard-specific solution evaluations may guide or be considered in the selection of a solution to solve a problem. Second, when teams accurately evaluated solutions for quality and originality, their solution choice more accurately reflected the selection of an optimal solution, on the basis of expert solution ratings.

This research addressed an important gap in the study of team creativity in two ways. First, we used an established model of idea evaluation and selection at the individual level and directly examined the proposed process in a team setting. Second, we established a relationship between team solution evaluation accuracy and the accurate selection of optimal solutions to solve a problem. Theoretically, this second outcome supports proposed relationships between two pieces of the cognitive process model of idea evaluation and selection proposed by Mumford et al. [27], namely, standard-specific evaluations and the selection of solutions, but in a team setting. The results of this study suggest that the evaluations of solutions for specified criteria (e.g., goals and standards such as quality and originality) relate to the selection of solutions to solve a problem. Specifically, accuracy in solution evaluations related to the accuracy of selecting optimal problem solutions.

One possible explanation for the solution selection outcomes may be due to the explicit instructions provided to the team about their standards and goals for evaluating and selecting solutions. Recall that the teams were asked to evaluate solutions for two specific criteria, quality and originality, and then instructed to select the best problem solution. Given that the teams were specifically asked to evaluate the solutions for originality in addition to quality, teams may have assumed that originality was also important and therefore used that as a criterion for selecting a solution as well as quality. Thus, it may be that teams will consider both the specified evaluation criteria and the explicit solution selection instructions when selecting solutions. This effect parallels findings by Runco and colleagues [38, 39, 40], who found that participants generated more original solutions when instructed to generate original solutions. However, it does not explain the relationships discovered between accurate solution evaluations and the accurate selection of optimal solutions to solve the problem.

In terms of standard-specific evaluation accuracy, recall that the solutions presented to the teams to evaluate were generated by students from a previous study. This type of design was necessary to ensure that each team received the same set of possible solutions, as this allowed us to systematically assess solution evaluation and selection accuracy by comparing evaluations and selections of the same solutions to ratings provided by expert raters. In addition, this type of design allowed us to compare solution evaluation and selection accuracy across teams as we tested a theoretical process model of idea evaluation and selection. However, recall that there are clear differences in the knowledge one holds about the circumstances surrounding the generated solutions depending on whether the ideas were self- or other-generated [36, 41]. Researchers have speculated that this knowledge may be a positive or negative influence on the accuracy of evaluating possible solutions [36, 41]. While studies indicate that individuals can accurately evaluate other’s solutions for criteria such as popularity, quality, and originality [e.g., 14, 35, 41, 42], the results of this study suggest that some teams may also be able to accurately evaluate other’s solutions for criteria such as quality and originality. This finding is theoretically important because when idea evaluation and selection occurs in teams, members are likely to deal with more ideas that were generated by others than ideas that are self-generated. However, we do not know exactly what factors might have led to some teams more accurately evaluating solutions for quality and originality than others. It may be that some teams better understood the rubric and resonated with the definitions of quality and originality than other teams. Or perhaps other factors such as communication, knowledge or experience with familiar problems, and task interest increased the accuracy of evaluations in some teams as opposed to others.

There are limitations we must consider when interpreting the findings of this research. First and foremost, although participants were randomly assigned into teams and teams evaluated solutions prior to selecting a solution to solve the problem, the study design was correlational. Consequently, we are unable to draw causal conclusions regarding the direct influence of solution evaluation accuracy on the accurate selection of optimal solutions. Thus, future research should consider an experimental approach and examine the direct causal influence of standard-specific solution evaluations on the accurate selection of solutions to solve a problem. Second, the study sample was composed of undergraduate university students. Although the problem the students dealt with was sufficiently ill-defined, complex, and related directly to work-related issues, there is always the question of generalizability to samples other than university students. However, the focus of the study was to examine the cognitive process of idea evaluation and selection in a team setting. Regardless
of the nature of the sample, the cognitive process itself is likely to generalize across various samples as long as the sample has sufficient experience or knowledge to effectively understand and solve the specific problem. Finally, due to limited variability and range restriction, we were unable to examine how team standard-specific evaluation related to the actual level of quality and originality of the solutions the teams selected based upon the team’s solution evaluations. Again, the nature of the instructions provided to teams regarding solution evaluations may have influenced the characteristics of the solutions selected to solve the problem. Future research may consider manipulating evaluation or solution selection instruction information to assess the effects of different standards and selection instructions on the nature of the solution selected to solve a problem.

One clear direction for future research is to continue studying the idea evaluation and selection process. First, we should continue to examine this process at the individual level to learn what individual differences or factors may influence solution evaluation and selection accuracy at the individual level. Second, we should expand upon the current research at the team level to examine how factors such as team composition, team processes, and task-related instructions, standards, and goals influence idea evaluation and selection accuracy in team settings.

Finally, this study examined only two of the three pieces of the cognitive process model of idea evaluation and selection Mumford et al. [27], namely how standard-specific evaluations related to the characteristics of selected solutions and accuracy of solution selection. However, there are other stages in the proposed process model that warrant further examination. For instance, future research could examine how the anticipation or forecasting of possible outcomes of implementing any given solution relates to and influences standard-specific evaluations and the nature and accuracy of selecting optimal solutions to solve a problem. In addition, we could examine whether the forecasting process itself is enough to facilitate the selection of optimal solutions, above and beyond the need to evaluate each solution for specific goals and standards, or whether this process is complementary to the evaluation process and the combination of the two guides an individual or a team toward the selection of an optimal solution.

References

