Negotiation Support Systems (NSS) are designed to assist negotiators in reaching mutually satisfactory decisions by providing a means of communication and through analysis of available information. The purpose of this minitrack is to provide a forum for interchange of ideas, research results, development activities, and applications among academicians and practitioners in the NSS field. Since 1991, this minitrack has gathered a respectable collection of papers in this young but promising area of research. Collectively, the selected papers in this minitrack continue to offer innovative and thought-provoking research in computer-supported mediation.

The focus of this year NSS minitrack is to explore the role of negotiation support in online multiple-issue auctions with various conditions of information sharing.

Kersten and Gimon look at the motives of the negotiators when dealing with an online negotiation. Given a shared task – i.e., electronic procurement – bidders may have different objectives in mind. In their experiment, they found that substantive and practice objectives do have significant effect on negotiators’ outcomes.

Wu conducts two additional experimental studies to measure the impacts of information revelation in multi-attribute reverse auctions. Using two particular treatments: revelation of admissible bids only and revelation of admissible bids and winning bids, his study suggests that there is no significant difference between the auctions outcomes, from the viewpoints of allocative efficiency, joint gain, outcome equity and the bidders’ profit. However, the buyers’ profit was significantly higher in auctions with information on winning bids revealed.

Zheng et al. devise methods for generating offers in a computer-automated multiple-issue negotiation. Assuming that the negotiation agent has no information about the opponent’s preferences, the authors propose an alternating-offer game with non-linear utility functions. As information is revealed over time through alternating offers, they propose a method to generate offers that help reduce the difference between offers and counter-offers. In their simulation, they show that not only the offer generation method helps find offers that converge toward the zone of agreement, but could identify a solution that is close to the Nash equilibrium over time.