Introduction to the Creativity and Innovation in Teams and Organizations

Minitrack

Triparna de Vreede, Roni Reiter-Palmon, Ginamarie Ligon
The Center for Collaboration Science
University of Nebraska at Omaha
{tdevreede, rreiter-palmon, gligon}@unomaha.edu

Innovation is a critical force in organizational performance and survival. Changes in technology, globalization, and increased competition have all created an environment in which creativity and innovation are needed in order to cope with situational and economic pressures and frequent changes. Designers and Developers of organizational systems must therefore innovate almost continuously to keep the organization aligned with such changes. Creativity is a critical pre-condition for innovation. Generating novel and creative ideas are the key to innovation and growth in every organization today. Providing employees with tools to think creatively has been proven to increase innovation in organizations. Research shows that organizations which have established skill-bases and tools for creativity outperform the competition in terms of revenue, rolling out new products, innovation and growth. Though organizations deploy groups for most creative processes, there has been little research in the area of group creativity. Most creative research is focused on individual factors affecting creativity. Many challenges that arise from pursuing creativity in teams remain unexplored. Consequently, it is important that creativity in teams be given a central place in organizational research.

This year we received sixteen papers, eight of which were accepted. These submissions cover a variety of topics ranging from theoretical development to field experiences with group creativity to algorithms and tools to support idea selection.

The first paper by Khedhaouria and Ribiere examines knowledge and creativity in IS development. The authors’ investigation of 148 students working in teams reveal a significant influence on both a team’s knowledge sourcing and learning orientation on creativity.

The next paper by Bhagwatwar, Massey, and Dennis presents a study in which teams brainstorm in a virtual environment that includes optional visual priming cues. Their results show that when teams generated ideas in creativity primed environment, they generated significantly more ideas that were of better quality than when they worked in a neutral priming environment.

The paper by Moser, Birkholz, Deichmann, Wang, and Hellsten, “Establishing Ideation Boundaries: an Exploratory Research of Idea Development in Science” addresses the development of scientific ideas within the science community over time. The authors trace the emergence of scientific ideation through conference co-authorship data and demonstrate that the emergence of new ideas is accompanied by a tendency toward less dense and transitive, but more evenly distributed, social networks.

The next paper, “Market resistance to innovative service-focused business models: insights from the service-dominant logic” by Freiling, Laudien, and Dressel argues that the diffusion of innovative service business models depends on the stage of the transition process from a goods-dominant to a service-dominant logic in business and society. Using a case study approach they identify a number of reasons of sluggish adoption of a particular business mode, total cost of ownership.

“Enhancing Creativity in Groups - Proposition of an Integrated Framework for Designing Group Creativity Support Systems”, by Voigt and Bergener investigates design principles behind Group Creativity Support Systems. They combine these principles in an integrated framework to guide system implementation.

The next paper by Herndon, Shalley, and Koseoglu examines how the imposition of time pressure affects team collaboration, creative processes and creative performance. Their experimental study shows that disruptions experienced earlier in a team’s workflow result in more steady-state time pacing behaviors and focus of attention than when time pressure is experienced later, which results in pronounced ‘spikes’ in these processes.

The paper by Derrick, Read, Callens, Nguyen, and de Vreede, “Automated Group Facilitation for System Requirements Generation” investigates the use of automated facilitators to guide the generation user stories in teams. The authors extend previous research by showing that avatar-guided prompted brainstorming resulted in a significant increase in the quality and quantity of requirements gathered.

The final paper by Kennel, Reiter-Palmon, de Vreede, and de Vreede investigates how teams can effectively evaluate ideas prior to selecting new products or solutions to solve a problem. Their findings show that team accuracy in solution quality evaluations relates to the accurate selection of a high quality solution, while team accuracy in solution originality evaluations relates to the accurate selection of a creative solution.