The Impact of Organizational Social Web Site Usage on Work Performance: A Multilevel Structural Interaction Perspective

Philip Raeth
EBS Business School
Institute of Research on Information Systems (IRIS)
Philip.Raeth@ebs.edu

Maurice Kügler
EBS Business School
Institute of Research on Information Systems (IRIS)
Maurice.Kuegler@ebs.edu

Stefan Smolnik
EBS Business School
Institute of Research on Information Systems (IRIS)
Stefan.Smolnik@ebs.edu

Abstract

Recent research endeavors have shown that knowledge sharing improves not only organizational idea development and innovation, but also work performance. In that matter, IS researchers have mostly focused on macro level analyses. We address this by developing a multilevel model for investigating the impact of organizational social web site (SWS) usage on individual and team performance. Our paper addresses this gap by drawing on existing guidelines for multilevel theorizing. We propose that team SWS usage impacts individual and team performance through its improved structural collaboration capabilities. Organizational learning, social capital, and network theories serve as the theoretical basis. Ultimately, we present a multilevel model as the foundation for future empirical research. Our research’s contribution lies in the theoretical derivation of a multilevel model.

1. Introduction

Knowledge sharing is recognized as a crucial source of competitive advantage [27]. Recent research endeavors have shown that knowledge sharing improves not only organizational idea development and innovation, but also work performance [20]. Consequently, many organizations employ information technology (IT) to support knowledge sharing and transfer [49]. Researchers have also investigated this phenomenon under the label of knowledge management [36] and organizational learning (OL) [2, 51]. We adhere to the latter and explore the role of two specific types of OL: exploration and exploitation, which are, when pursued simultaneously, referred to as ambidexterity. Researchers have mostly focused on macro level analysis when investigating exploration, exploitation, and ambidexterity [74]. Some, however, suggest that investigating them as micro level phenomena is a promising research area [35, 74].

Social web sites (SWS) – web sites providing social networking functionality and user-generated content – have recently attracted organizations’ attention as they promise to strengthen knowledge sharing and knowledge transfer capabilities [3, 89]. SWS’ value is theorized to stem from mass collaboration or the collective wisdom of the crowds [60]. Despite the focus on collectives, recent work published in the area of SWS only investigates discrete levels of analysis [81, 91]. However, the micro- or macro-only perspective of research only provides a partial understanding of individual SWS usage, because it omits the influences across levels [92]. As a consequence, these studies may overlook “the interrelationships among individuals, structures, institutions, etc., all of which may play a role in shaping the behaviors, actions, and outcomes” [79, p. 780]. In our research, we draw on existing guidelines for multilevel theorizing [e.g., 52, 54, 67] to address these issues. We conceptualize a theoretical model, which investigates the usage of SWS for purposes of exploration and exploitation in organizations. We then frame a multilevel model to investigate the role of OL for SWS usage and its impact on performance at the team and individual level.

We contribute to the literature in several ways. First, we conceptualize the concepts of exploration and exploitation at the individual level of analysis contributing to the ongoing efforts of understanding the individual’s and SWS’s role within OL. Second, we offer a multilevel perspective, which allows for investigating SWS related effects and phenomena across levels. As a consequence, we may observe ambidexterity at multiple levels. This will enable us to gather evidence about the very mechanisms that give rise to ambidexterity at the team level therewith addressing the “need for theories that capture ambidexterity across multiple levels of analysis” [75, p.686].
We organize our paper as follows. The next section defines SWS, characterizes its organizational usage, and describes the theoretical foundations. We also note the accomplishments of past usage research and outline its main criticism. In the main section of the paper, we introduce the multilevel model and deduce our hypotheses. Then, we describe the applied methodology and the future data collection process. The conclusion summarizes the results and outlines the implications for research and practice as well as the limitations and next steps.

2. Theoretical foundations

2.1. Social web site usage

Social web sites (SWS) are “those Web sites that make it possible for people to form online communities, and share user-created content (UCCs)” [50, p. 216]. In the organizational context, people are represented by an organization’s employees, a network of co-workers represents the community, and UCCs are represented by any kind of content, for example, text, photos, videos, bookmarks, user profiles, and activity updates. In short, organizational SWS are a mix of social networking sites, which consist of personal profiles and communities, and social media sites with which to share various media types [50]. Organizations employ SWS to address knowledge bottlenecks [87] and to allow conversational ad hoc knowledge management [86, 88].

SWS usage is mainly concerned with collaboration and communication among individuals and teams [60]. Research on collaboration technology has shown that an individual’s usage patterns are strongly influenced by her/his peer network’s usage patterns [84]. With regard to organizational SWS usage, this means its effects at higher levels need to be taken into account regarding its usage at lower levels. Disregarding such cross-level effects and applying strictly single level designs might lead to misleading conclusions [14]. To date, research in the area of SWS has offered insights into various phenomena. Wattal et al. [91], for instance, operationalize weblog usage by individual employees’ number of posts. Cummings et al. [19] discuss two types of personal usage – consumption and contribution – by considering the individual as the unit of analysis. Shin and Kim [81] argue that individual cognitions and effects determine a specific online SWS platform’s usage, while also disregarding collective phenomena. Hence, we observe that despite being described as a collective phenomenon, SWS usage has mainly been investigated from the individual’s perspective. In order to obtain insights into the collectivist SWS character, we draw on organizational learning (OL) theory [61] and social capital theories [68].

2.2. Organizational learning, social capital, and networking theories

Organizational learning (OL) involves the acquisition, retaining, and transfer of knowledge [41, 76]. It occurs at multiple levels of an organization – the individual, group, and organization [18] –, making it especially eligible for multilevel theorizing. Exploration and exploitation are two types of OL that have been shown to significantly affect organizational performance [e.g., 6]. Exploration is concerned with replacing existing knowledge, or developing new knowledge [61]. In contrast, exploitation involves incremental learning by means of diffusion, refinement, and reuse of existing knowledge [49, 61]. “Organizational learning involves a tension between assimilating new learning (exploration) and using what has been learned (exploitation)”[18, p. 523]. Prior research shows that, in order to be successful under given resource constraints, organizations need to balance these two learning patterns [61]. OL researchers investigate this aspect under the ambidexterity label [e.g., 30, 35]. “Ambidexterity is understood as the balanced combination of exploration and exploitation” [64, p. 1]. Previous literature has shown that IT can be a driver of OL in terms of exploration and exploitation [49, 71]. In the following, we argue that individuals, as well as work teams can use SWS explorative and/or exploitative in order to leverage existing knowledge and/or to create new knowledge.

Social capital theories argue that the sum of resources available to individuals and larger entities lie within their network of relationships [68]. This social capital can be grouped into structural, cognitive, and relationship capital. Structural capital represents the configuration of impersonal relationships, cognitive capital refers to shared properties such as meaning or interpretations, and relationship capital describes the nature of a relationship (e.g. trust and affect). Social networking theories state that ties or relationships are characterized in terms of interaction frequency between two parties and reach from weak (few interactions) to strong (many interactions) [32]. Weak ties are likely to exhibit non-overlapping and new ideas, as well as new insights from new sources of knowledge [33]. Strong ties provide access to a homogenous pool of knowledge that have “a greater motivation to be of assistance and are more easily available” [33, p. 113]. Researchers found the above theories to be essential in various situations, such as the diffusion of ideas [33], knowledge sharing across
organizational boundaries [37], or knowledge sharing in electronic networks of practice [90]. In general, IS have been found to foster weak tie relationships amongst co-workers by establishing new weak ties [28, 73]. Strong ties as well have attracted a number of researchers who found that the stability of strong ties is reliant upon affection and time [56] or that their role differs depending on culture [7]. Further it is argued that in the future, the rise of SWS inside and outside organizations will put social centers and their associated social capital at the center of IS research [69].

3. Conceptual model and hypotheses

3.1. Individual level model and individual usage of SWS in a task

Given SWS’ possible usage scenarios (e.g., job related or non-job related), a conceptualization of SWS usage should therefore be handled with care. In order to address this conceptualization issue, we follow Burton-Jones and Straub [15] and define system usage as an activity composed of two fundamental elements: a system and a task performed by a user. SWS are used to accomplish job related tasks, such as knowledge sharing or collaboration. Researchers have measured individual benefits in terms of job productivity, job performance, decision quality, time savings, and effectiveness [21, 31, 42, 44, 59]. We adhere to the definition by Goodhue and Thompson and define individual performance as “the accomplishment of a portfolio of tasks by an individual. Higher performance implies some mix of improved efficiency, improved effectiveness, and/or higher quality” [31, p. 218].

We seek to link the task dimension in the system usage construct to individual performance impact by measuring the degree to which employees use SWS features to support job-related tasks. Breadth of use has often been the measure of choice to measure a system’s employment in a task, but has only established a weak link to individual performance [15, 72]. We therefore follow recent recommendations from IS research that propose employing a task-specific measure [15, 83]. This suggestion is also in line with the theory of task-technology fit (TTF), which suggests that the better a technology fits a task, the higher its performance impact is [31]. We thus establish a task-centered usage measure based on the two OL concepts exploration and exploitation [61], which together form the concept of ambidexterity [e.g., 30, 35].

Concerning the level of analysis, research has mostly regarded and conceptualized ambidexterity as a characteristic of an entire business unit [64]. However, ambidexterity “manifests itself in the specific actions of individuals throughout the organization” [30, p. 211]. Following this line of thought, we regard exploration, exploitation, and ambidexterity as individual level phenomena. Individuals may thus use SWS explorative and/or exploitative. Table 1 presents exploration and exploitation’s main ideas in terms of SWS usage.

On the basis of OL, we argue that SWS usage for exploration and exploitation increases individual performance.

<table>
<thead>
<tr>
<th>SWS usage for exploration</th>
<th>SWS usage for exploitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goals: Finding and creating new solutions to business problems based on knowledge and expertise found via SWS</td>
<td>Goals: Enhancing collaboration, communication, and coordination processes among organization employees</td>
</tr>
<tr>
<td>Outcomes: New solutions to existing business problems resulting in new capabilities and knowledge</td>
<td>Outcomes: Intangible benefits such as better coordination within projects/activities and enhanced collaboration</td>
</tr>
</tbody>
</table>

The argument follows Schumpeter’s [80] logic that exploration and exploitation can be seen as the application of knowledge in new ways as well as in well-understood ways. The ability to perform these activities depends on an individual having knowledge available. In other words, the higher the diversity of the knowledge applied, the higher the likelihood that the outcome will be novel and groundbreaking. Conversely, the use of existing and local knowledge is likely to lead to exploitative activities, as new combinations of existing knowledge only allow incremental improvements [29]. Furthermore, SWS offer knowledge search and retrieval features that provide access to a diverse and heterogeneous knowledge pool containing various forms of knowledge repositories, such as weblogs and wikis. Individuals using these features are exposed to a broader set of perspectives, which eventually leads to novel outcomes, which may in turn ultimately lead to higher performance through explorative activities [77, 85]. In addition to new knowledge, SWS also offer new insights into existing knowledge, which might offer new aspects of well-known activities. Hence, using such features to support well-known activities will improve individual job performance through exploitation. Following the ambidexterity literature, a combination of exploration and exploitation will eventually result in a higher performance impact [e.g., 74, 75]. Assuming that exploration and exploitation are two ends of a continuum due to the limited resources available to an individual, a higher performance impact can be expected from a balance between SWS usage.
for exploration and exploitation. As Gupta et al. [34, p. 697] put it, – “the scarcer the resources needed to pursue both exploration and exploitation, the greater the likelihood that the two will be mutually exclusive – that is, high values of one will necessarily imply low values of the other.” Hence, following the ambidexterity literature, a combination of SWS usage for exploration and exploitation will eventually result in a higher performance impact [e.g., 74, 75]. We thus argue for a U-shaped relationship between SWS usage and performance impact.

Hypothesis 1 (H1). Individual SWS usage has an inverted U-shaped relationship with individual performance impact.

3.2. Team level model

We define teams as “collectives who exist to perform organizationally relevant tasks, share one or more common goals, interact socially, exhibit task interdependencies, maintain and manage boundaries, and are embedded in an organizational context […] that sets boundaries, constrains the team, and influences exchanges with other units in the broader entity” [55, p. 334]. As a consequence, it is essential to address these characteristics when defining team level usage.

The discussion of levels of analysis is one of the most important and basic concepts for researchers in general and for multilevel theory development in particular [78]. When theorizing on multiple levels, the wrong choice might lead to “imprecision within the theory and confusion during data collection and analysis to test the theory” [54, p. 205]. According to Klein et al. [54], three elements – the level of the theory, the level of data analysis, and the level of data collection – need to be considered. Our research focuses on the team. However, our levels of analysis are the individual (see individual level model) and the team (team level model). Consequently, the level of theory we aim to specify refers to individuals nested within teams. This approach has several consequences for the assumptions of that theory’s variability [54]. Multilevel theorists depict three types of construct variability: homogeneity, independence, and heterogeneity. The first asserts that an entity’s members are homogenous within that entity, the second states that they are independent of that entity (e.g., an team member’s age is independent of the team), and the third argues that an entity’s members are heterogeneous within the entity, i.e. the properties of its individual parts are assessed in relation to the whole [53, 54]. We argue that team usage is a heterogeneous phenomenon because different configurations result in different degrees of performance impacts (e.g., based on theory, a balance of explorative and exploitative SWS usage results in higher performance impacts compared to other configurations, such as a focus on one single type of usage). Whether the function of a construct remains the same at all levels of analysis is another element that needs to be discussed [9, 43, 45, 67]. In our research context, that is, does team SWS usage positively affect team performance impact just as individual SWS usage affects individual performance impact? To answer this question, it is important to understand how collective structure and action emerge and how they positively influence performance. Given our basic model’s assumption that individual SWS usage impacts individual performance positively, we propose that team usage, i.e. a collective action, impacts team performance positively [23, 24, 62]. However, the impact of SWS usage on team performance does not emerge in the same way as it does with individual performance. This is rooted in the structure of team usage, which not only comprises aggregated individual usage, but also the interactions during usage [14, 52]. While this alters the structure of our usage construct at the collective level, it does not alter the output’s structure. Thus, similar to our individual level, we define team performance as the accomplishment of a portfolio of tasks by a team [38, 46]. “Higher performance implies some mix of improved efficiency, improved effectiveness, and/or higher quality” [31, p. 218]. In order to understand how team usage allows for better collective performance, it is necessary to understand team usage’s structure [14], which we subsequently discuss.

3.3. Team SWS usage

Team learning is central to team performance [4, 25]. Team learning is “an ongoing process of reflection and action, characterized by asking questions, seeking feedback, experimenting, reflecting on results, and discussing errors or unexpected outcomes of actions” [25, p. 353]. We argue that the usage of SWS supports this process in that several of the involved activities and, therefore, team performance [11] are improved through collaboration, which is a central element of team learning [1]. Within team literature [39, 62], as well as IS literature [5, 24], there is evidence suggesting that collaboration is associated with higher team performance and effectiveness. It has been argued that team members seek advice on the shared meaning and understanding of SWS. Such advice seeking refers to one form of interpersonal interactions. These interactions allow for collective action eventually forming collective phenomena, which in turn form collective constructs [67]. Consequently, the
interdependencies between users need to be considered when investigating collective usage of an IS [14]. Interdependencies-in-use are IS related interactions in which two or more people influence and/or control each other [22] as part of collective IS usage, that is, “dependencies among members of a collective that relate to their use of a system” [14, p. 663]. Lindenberg [58] proposes three interdependency subtypes: functional, cognitive, and structural. Functional interdependencies describe the goal of interdependency, i.e. to accomplish a task. Cognitive interdependencies represent informal elements such as social communication and norms. Finally, structural interdependencies include various structural relations, such as ties to other functions and teams. In this paper we focus on structural interdependencies-in-use during collaboration behavior. “Collaboration behavior is characterized by attempts to identify and achieve outcomes that satisfy the interests of all parties involved. This behavior emphasizes openness to others’ points of view, objective consideration of all information, and shared problem-solving toward a jointly optimal solution” [65, p. 1253]. This definition stresses that collaboration is a collective phenomenon that cannot exist in an individual. Following from that, collaboration-in-use, meaning the dependencies among members of a collective that relate to their collaborative use of a SWS, is a necessary condition for collective SWS usage to exist, and therefore a suitable candidate to measure structural interdependencies-in-use.

We label the collaboration processes dealing with structural relations structural collaboration-in-use. Structural collaboration-in-use focuses on individuals’ ties to other people as well as their position in social networks. The availability of weak ties reportedly has a positive influence on performance of individuals [17] and groups [63]. Researchers have also found that structural diversity has a positive impact on performance [20, 48]. Individuals and groups with better access to other geographic locations, functional assignments, reporting managers, and business units have access to a larger pool of knowledge than other individuals. We argue that SWS support structural diversity and the availability of weak ties in that they offer access to knowledge of rather distant organization’s members. In addition to strengthening the power of weak ties, SWS also offer prospects to find potential ties through expert or topic search. Individuals might also find potential ties by bridging weak or strong ties of their own social network. Finally, SWS are also suitable for knowledge sharing among strongly tied members of groups or teams [86, 87, 88]. For example, a wiki could be used to collaborate on documents or tasks. In summary, we argue that we can account for structural interdependencies by measuring whether individuals use the system for within team and outside team collaboration. We thus separate structural collaboration-in-use occurring within the team (internal structural collaboration-in-use) and collaboration with individuals not part of the team (external structural collaboration-in-use). To conclude, we maintain that teams, which share information via SWS, will experience higher performance impacts than teams that do not follow this strategy.

Hypothesis 2a (H2a). Team SWS usage is positively related to team performance impact.

Further, we draw on OL [61] to theorize the functional importance of our configural (i.e. heterogeneous) collective system usage construct. We argue that ambidexterity refers to the simultaneous pursuit of exploitation and exploration by adopting specific configurations [75]. Therefore, teams using SWS will try to find balanced configurations through individuals engaging in both exploration and exploitation, or splitting these tasks among team members. Note that our assumption here differs from the one in our individual level model in that we argue for an orthogonal relationship between exploration and exploitation [35]. This is the case because team members can balance each other’s resources and are not restrained to their own. Finally, teams with a high balance between explorative and exploitative usage will experience higher performance impact levels than teams with lower balance levels. The argument put forth here is similar to H1, with the difference that individuals in teams can engage in division of labor. Thus, across different and loosely coupled domains (i.e. individuals or subsystems), exploration and exploitation will generally be orthogonal, in that high levels of exploration or exploitation in one domain may coexist with high levels of exploration or exploitation in the other domain [35, p.697].

Hypothesis 2b (H2b). The higher the team’s balance between SWS usage for exploration and SWS usage for exploitation (i.e. ambidexterity), the higher the team performance impact.

We identify cross-level effects through the interdependencies among individuals. External structural collaboration-in-use positively impacts individual performance. Individuals usually rely on their own knowledge to perform a task. SWS give the possibility to contact others in order to gather knowledge or discuss elements that might help to
accomplish job related goals. SWS extend the circle of possible contacts to assist with the problem at hand. Someone using SWS to access collective knowledge to perform his/her tasks will thus be better in accomplishing his/her job related goals. It follows then that external structural collaboration-in-use improves individual performance [20].

Hypothesis 3a (H3a). External structural collaboration-in-use is positively related to individual performance impact.

Based on Burgelman [13], we argue that internal structural collaboration-in-use within the team fosters usage for exploitation. Conversely, external structural collaboration-in-use improves usage for exploration. The argument here is that “firms need order as well as diversity to maintain their viability. Diversity results primarily from autonomous strategic initiatives of participants at the operational level. Order results from imposing a concept of strategy on the organization” [12, p. 1349]. Structural collaboration-in-use on the team level thus fosters SWS usage for exploitation because it is based on a rather homogenous knowledge pool associated with existing knowledge and routines (i.e. order). On the contrary, structural collaboration-in-use outside the team is related to diversity seeking activities, which aim to grasp into a more heterogeneous knowledge pool (i.e. diversity) [85]. Hence, we maintain that collaboration outside the team fosters activities linked to SWS usage for exploration, while collaboration inside the team will be linked to SWS usage for exploitation.

Hypothesis 3b (H3b). External structural collaboration-in-use is positively related to SWS usage for exploration.

Hypothesis 3c (H3c). Internal structural collaboration-in-use is positively related to SWS usage for exploitation.

Figure 1 summarizes our conceptual model.

4. Research methodology

Data for this study is collected in two phases. The first phase, which involves conducting interviews, aims at providing a preliminary review of the proposed model’s constructs and their relationships, and developing an initial set of items for the constructs’ conceptualizations. For this purpose, exploratory interviews were being conducted in two multinational IT firms in Europe (both with 50,000+ employees). Both organizations have launched internal SWS that are available to all their employees. All SWS used in the organizations under investigation are off-the-shelf products with minor adaptations made to fit the organizational IS landscape. To gain a broad insight into the usage of SWS for exploration and exploitation, we interviewed employees from varying hierarchy levels (both sales and project oriented). We followed a semi-structured interview guideline to systematize the data collection procedure and to increase the collected data’s comprehensiveness [70]. We have conducted ten interviews (six in one company, four in the other; one
manager each, the rest without mgmt. responsibility, both services/sales oriented) up until we reached theoretical saturation. We summarized the interviews and analyzed them using the Atlas.TI software package. Two coders grouped use cases (that is ways in which the SWS is used) into either explorative or exploitative usage as defined in Table 1, amongst others. Agreement was considered satisfactory (Kohen’s Kappa of 0.87).

In the second data collection phase, we will launch a survey to validate the proposed model. We have therefore established an initial item pool for our measurement instrument. This item pool is based on established measures as proposed in the literature, as well as on the SWS exploration and exploitation scales developed on the basis of interview results and the literature. Given that our team performance, individual usage, and team usage constructs have several dimensions but belong to the same theoretical concept, we propose an aggregate higher-order construct for measuring these constructs. Aggregate higher-order constructs are used to represent several distinct dimensions as a single theoretical concept [26]. The constructs unite several dimensions into a common concept and can, for illustrative purposes, be regarded as similar to formative measures [26]. The theoretical utility of such constructs is sometimes contested on the grounds of its inferiority to multivariate models. However, along with Edwards [26, p. 149], we think that “this dilemma may be ameliorated by developing theories that incorporate multidimensional constructs along with their dimensions.” Thus, we develop team performance, individual usage, and team usage as multidimensional constructs.

The next step of the survey instrument refinement will involve an in-depth validation of the developed instrument prior to launching the actual survey. To ensure the item pool’s content validity, we will employ established procedures (e.g., card-sorting and the item-ranking approach) [66]. In order to ensure the survey instrument’s quality, we will discuss the draft with an expert panel (semi-structured, face-to-face interviews) and implement their feedback. We will subsequently further adjust the items if important aspects of a construct’s content domain are not as yet covered. In the last step to validate the research instrument, we will launch a Web-based pre-test with selected participants. To empirically validate the proposed model, we aim to launch the survey instrument in the field by means of a benchmarking study, in which we offer the survey instrument to organizations willing to benchmark their internal SWS platform with other organizations. Using the survey’s empirical data, the instrument’s psychometric properties will be explored by applying second-generation modeling techniques (for analysis at a single level), as well as hierarchical level modeling (for nested entities and cross-level connections) [40]. Following the validation guidelines of Straub et al. [82] and Lewis et al. [57], we will test the measurement model for reliability, convergent validity, discriminant validity, and predictive validity. The aggregate measures’ viability will be tested using intra-class correlation (ICC) and the reliability of the group mean [8]. For purposes of measuring combined constructs, we aim to use multiplicative interaction to compute ambidexterity [10]. Given an adequate measurement model, the structural model will be analyzed to test the associations hypothesized in the research model.

5. Next steps

For future advancement of the model, we plan to consider SWS usage’s context in our model. Knowledge workers encounter a wide spectrum of knowledge needs, which depend on different institutional and individual application adoption decisions in real world settings [47]. For example, employees who have to follow strict process parameters will probably not be inclined to frequently exchange or seek knowledge. Their tasks mainly center on well-defined processes that usually do not require flexible knowledge exchange. On the other side of the spectrum, employees who regularly have to deal with novel or unstructured business problems are tied to their access to knowledge resources and depend on exploring other people’s knowledge. We thus plan to integrate Goodhue and Thompson’s [31] task characteristics measures, which describe task equivocality (e.g., uncertainty) and task interdependency (e.g., the extent to which a task relies on relations with other individuals), into our model as moderators. Besides the tasks that a knowledge worker performs, a work environment’s virtuality (e.g., geography, work practices, and organizational climate) [16] might also have a considerable impact on the relationship between SWS usage and its performance impact. Hence, SWS are used in various contexts within an organization. Furthermore, ambidextrous individuals are said to exhibit several characteristics such as holding contradictions, multitasking, or being able to make own decisions [64]. In order to successfully predict performance impacts from ambidextrous usage of SWS, we will integrate the above mentioned constructs as moderators.

6. Conclusions

We proposed a conceptual model for measuring SWS usage’s impact on individual and team performance. Our theoretical contribution lies in the outline of an initial model for measuring SWS’
performance impact by regarding SWS usage as a collective phenomenon. Further, our model also promises to provide insights into the very fabric of OL at the individual and team level. Our practical contribution lies in providing an instrument with which corporations can measure SWS usage on the individual as well as the team level and its performance impacts on their organizations.

Our research is limited in that it is so far only based on explorative, semi-structured interviews, literature, theory, and our own experience. Thus, it needs further elaboration in the upcoming evaluation stages described above.

We expect to make three main contributions to the literature. First, we provide an individual level construct to measure SWS usage for exploration and exploitation. Second, we will be able to observe and evaluate group configurations of SWS usage for exploration and exploitation. Third, we will offer a multilevel account of SWS usage, which, based on our OL framework, offers insights into how individuals within groups use SWS in their work contexts and how ambidexterity may emerge at various levels of analysis.

6. References

