Knowledge systems are increasingly used to support globally distributed work. Projects are a natural means of designing and deploying such systems. There is plenty of literature on the management of information systems design projects and some literature on information systems deployment projects. However, knowledge systems are typically more complex organizationally and socially than most traditional information systems. For example, enterprise resource planning systems typically must be used to get the work done whereas many knowledge systems are voluntary to use. It is reasonable to assume that project management involved in the design and deployment of knowledge systems differs from the project management involved in traditional information systems projects. Examples abound in the literature about knowledge systems deployment efforts that failed because (1) the business cultures did not encourage and reinforce knowledge sharing and (2) the necessary organizational change could not be implemented. Such failures could often have been avoided if (1) more balanced efforts between the design and deployment of knowledge systems had been implemented and (2) the design and deployment efforts had been managed through coordinated design and deployment projects. Deployment projects have a crucial role in implementing organizational and social changes. Yet, deployment is often considered only as a phase in larger design-driven projects.

This minitrack calls for research contributions in domains where large economic, organizational, and social benefits can be obtained from the effective management of knowledge systems design and deployment projects. Contributions should span the dualism between knowledge system design and deployment research and/or the dualism between the design project and deployment project research, helping individuals and organizations design and use work systems and enabling knowledge systems holistically. For example, when the routines of people using knowledge systems unexpectedly break down, people typically devise workarounds, potentially changing their work practices or using the knowledge systems in unintended ways. Sooner or later, workarounds become ineffective and new holistic work system and knowledge system redesign projects are needed to devise lasting solutions. Theory-based normative advice is needed to answer questions such as why, when, and how to devise new holistic work system and knowledge system designs (1) to deal with the encountered breakdowns and (2) to leverage and appropriately institutionalize the knowledge embedded in the improvised workarounds.

In 2012, this minitrack consists of two papers. The paper of Laddawan Kaewkitipong investigates the reasons for and the lessons to be learnt from the failure of Google Wave, a shared space on the web where people can collaborate using multiple media and artifacts. Kaewkitipong conducted content analysis of secondary data from several online forums, which discussed the failure of Google Wave, and primary data collected from interviews with early adopters who had discontinued using Google Wave. Complexity and a lack of relative advantage were found the most frequently cited reasons for failure. The exclusivity of Google Wave through the invite-only policy was also cited as a reason for failure. Designers and vendors of web-based knowledge systems thus need to be able to (1) balance between delivering all-in-one systems and keeping the systems easy to understand and use and (2) understand the dynamics of decision making within social networks in which single actors can seldom decide which systems the networks should adopt.

According to Koivulahti-Ojala and Käkölä end-user training is complicated to implement in global software development organizations where development work is distributed across multiple sites that may leverage a development tool for very different purposes. Web-based Virtual Meeting Tools (VMT) enable synchronous communication and provide potentially a cost effective way to train even complex topics to large numbers of people in global settings. Few industrial experiences from the design and use of VMT-based training innovations have been reported. The paper draws upon a case study in a global corporation to describe the design, implementation, and evaluation of a VMT-based training innovation for delivering a set of courses to support the global deployment of a Unified Modeling Language (UML) modeling tool and to develop UML modeling skills. The innovation proved successful in improving skills, knowledge, and motivation and learners were satisfied with it. Other organizations may benefit from using VMT to train people to use similar complex information systems.