Network Structure or Tie Content? The Impact of Managerial Networks on Career Outcomes and Influence

Nicoline Scheidegger
Zurich University of Applied Sciences
snici@zhaw.ch

Abstract
Social networks are crucial for gaining information, enhancing one’s own influence and promoting the career advancement. This paper addresses the question which network properties explain intra-organizational outcomes at work.

Following the idea of Burt [1] concerning the benefits of structural holes, I explore on the one hand the impact of structural holes on influence and career outcomes in a knowledge intensive firm. Considering the specific characteristics of knowledge intensive firms, I incorporate the importance of tie strength and professional closeness in my analysis of organizational outcomes.

On the other hand, I explore the resources gained through different tie contents. The relational resources are clustered and analyzed with regard to their structural properties.

Data was collected using online questionnaires in a Swiss service firm. The ego-networks of 288 managers were analyzed, using eight name-generating questions.

Two effects stand out: Firstly, structural holes, strong ties and professional closeness do enhance influence and career success. Secondly, the networks can be clustered in three different groups: i) work related information, ii) strategic information or cultural norms and iii) personal support.

The results show the relevance of tie content for network analysis. The consideration of the resource flow allows a better understanding of the contribution of structural properties to organizational outcomes.

1. Introduction

The study of networks in organizations is becoming an important concern in business studies. A broad consensus is emerging that networks are a valuable asset and that its value stems from the access to resources that it engenders through an actor’s social relationships [2]. The impact of social networks on performance has been studied at multiple levels, ranging from the individual [3, 4] to the level of firms [5, 6]. This study pays particular attention to the individual level. There, benefits of social networks include more timely and novel information, greater control and enhanced status.

Beyond the broad consensus about the importance of one’s social relations, there is a debate surrounding several issues regarding the network properties and mechanisms through which relations have an impact on performance. Two issues are of particular importance to this debate [7].

One concerns the mechanism through which networks have an impact on work outcomes. Network benefits are conceptualized with resources reached by one’s contact and with the quality of the ties in the sense of strong or weak ties on the one hand. On the other hand network structure itself is focused. Various studies have investigated the benefits of a position in a network where ego bridges the structural holes through connecting unconnected parts of a network. Scholars have shown the merits of networks characterized by structural holes for information and control benefits. But there is still a lack of direct attention to the complementarities between strong ties and structural holes. Furthermore, only in scarce studies knowledge processes are examined.

The second issue is concerned specifically with the content of ties. In network theory, there is inattention to tie content and the different composition of networks in respect to different contents.

In this paper, I seek to advance the debate on these two issues in several ways. First, I show that structural configuration should be combined with relational properties to explain work-related outcomes. In addition to structural embeddedness, the quality of one’s relationships is also important. It matters especially in knowledge-intensive organizations. Strong ties and ties to professional close actors facilitate transferring complex knowledge. Second, I shed light on the structuring of different network flows.
Eight tie contents are analyzed and clustered in respect of their similarities in structural properties.

This study of 288 managers in a large knowledge-intensive company explores the influence of social networks on work-related outcomes. I focus on career success and on influence.

A notable finding of the study is that a combination of structural holes, strong ties and professional close contacts play a role in explaining career success and influence. The network ties can be clustered in three groups. One is related to work communication, the other covers friendship ties and the third consists of weak ties that provide connections to the higher hierarchy and transmits organizational norms and strategic information.

The next section lays out the theoretical background and further develops the central issues noted above. Hypotheses based on the theoretical development are then formulated, the methods used to test these hypotheses are outlined, and the results are presented. I conclude with a discussion of the findings and their implication for network analysis in organizations.

2. Network structure or tie content

2.1. Structural holes as beneficial network structure

One dimension of social networks refers to the position someone has in the network of relationships. Burt [3] states that, “a structural hole is a relationship of non-redundancy between two contacts.” (See Figure 1, where structural holes between three groups are bridged by ego). The two contacts provide network benefits that are additive rather than overlapping. The focal actor then has a minimum of redundancy in his relations and the widest choice of interaction partners.

Network “entrepreneurs” will maximize the number of structural holes in their networks, which means that linkages between the different groups depend on them. Important in the context of work is access to information through such a network. While a closed network is assumed to bring little news to its members [8], a person who has a network with many structural holes can get more information and will get it earlier. Through selection and synthesis he can create richer knowledge than he would be able alone or in a closely connected network. “People whose networks span structural holes have early access to diverse, often contradictory, information and interpretations, which gives them a competitive advantage in seeing good ideas.” [9] Knowledge integration and transmission can be thought as transmitting best practices through a cultural translation between different groups, drawing analogy between groups ostensibly irrelevant to each other and therefore ignoring their approaches to solve problems, and through the ability to create something new through a synthesis of different knowledge. All levels are useful for problem solving.

Hypothesis 1: Structural holes have a positive effect on career success and influence.

2.2. Strong ties as facilitator of knowledge transfer

A second dimension of networks refers to the relational quality of ties. With the study of Granovetter [8] on the strength of weak ties, strong ties have long been neglected in organizational research. In contrast, research on product innovation assumes that close, regular contacts, so called strong ties, enhance the exchange of knowledge [10]. In network theory, the benefits of strong ties get rediscovered recently.

Hansen [5] has demonstrated the importance of strong ties transferring complex, “tacit” knowledge – i.e., know-how that is difficult to codify or explain – across departmental boundaries. Whereas weak ties can help to identify new knowledge, strong ties favor the knowledge production process. This allows the conclusion that a combination of structural holes with the benefits of strong ties is beneficial [11-13].

Hypothesis 2: Strong ties in combination with structural holes have a positive effect on career success and influence.
2.3. Professional closeness to avoid cognitive asymmetries

Similarity breeds connection. This homophily principle structures network ties of every type, including friendship, support, advice, and information exchange. The result is that people’s networks are homogeneous with regard to many sociodemographic, behavioral, and interpersonal characteristics [14]. However, homophilious ties don’t need to be beneficial. Diversity [15] and creativity research [16, 17] stresses the effectiveness of diversity for creativity and innovation. Others stress the prerequisites to obtain positive impact from heterophilious ties [18, 19].

In a professional service firm, attributes such as professional background or functional affiliation is particularly salient and relevant. Organizational members pool their complementary knowledge for effective problem solving. Different functional background results in cognitive asymmetries and hinders comprehension between actors. It impedes the exchange of know-how even when actors are motivated to cooperate [20]. Cognitive asymmetries can result in incommensurateness of particular knowledge bases and absorptive capacities. Szulanski [21] refers to the stickiness [22] of the transfer of best practices between organizational units and describes the lack of absorptive capacity responsible for the lack of knowledge transfer.

Effective communication and the transfer and utilization of knowledge are facilitated by professional closeness.

Hypothesis 3: Professional closeness has a positive effect on career success and influence.

2.4. Differentiation between resources exchanged: the tie content

Structural holes focus the network structure, strong ties the relational quality and professional closeness the similarity of actor’s attributes. A further distinction can be added by focusing the resources exchanged [4]. Network ties can be divided in more strategic or more solidarity-based ties [23]. The differentiation between the resources exchanged shed light on the connection of tie contents to structural properties. I focus on eight kinds of ties using eight name-generating questions. They cover dimensions of collaboration and information exchange from which it is supposed to have an impact on performance and work-related outcomes. They derive from the literature on organizational performance and career development [4, 24], and are adapted to the organizational work context of the company analyzed.

Related to the work role, task-related information exchange and advice giving and receiving are covered. They serve the actual work accomplishment. To be up to date with regard to strategic initiatives and goals of crucial persons of the organization or the department, often informal ties are used. Strategic information exchange is included therefore. The buy-in network is composed of those individuals, whose support an actor needs in order to pursue initiatives successfully within the organization. The network of organizational culture involves people who transfer norms, values and unwritten rules. Vocational development refers to the people who provide sponsorship [25]. Personal support is similar to friendship ties. They are not related to the work task and are more background resource [26].

Different kinds of tie will be associated with different structural properties.

3. Method

3.1. Sample

The social networks were collected through an online survey instrument. Members of the management level of a Swiss headquarter were asked to designate others with which they share a certain relationship or resource exchange. The response rate was 25%. There is no nonresponse bias on the basis of hierarchical level and gender. The ego-networks of 288 managers could be analyzed.

The company has a flat hierarchy with 3 levels (upper management, middle management and staff members) and has a strong emphasis on internal career paths. 74.9% of middle management and 94.4% of upper management is promoted internally.

3.2. Name generators

The managers were asked to indicate alters with which they exchange a certain resource. Eight network generation questions were used to collect the task network, organizational culture, vocational development, advice seeking, advice giving, strategic information, social support and buy-in. The mean degree of the network contains 12.75 alters. 3681 alters where named.
3.3. Measures

3.3.1. Independent variables. For the regression analysis, the variables tie-strength, professional closeness, power access of alter and the structural hole measures are used. The residual variables are used for the cluster analysis.

Tie strength: Granovetter [8] argued that the strength of a social tie is a function of its duration, emotional intensity, intimacy, and exchange of services. I follow Marsden & Campbell [27] and measure emotional intensity as the best indicator of tie strength. I do this by asking the respondent how they characterize the tie to alter with a three point Likert scale from “know him, but no close relation” to “very close relation”. Such a scale is likely to yield a network dataset that is richer in information and more suitable to investigations that rely on weighted network measures.

Professional closeness assesses the closeness from ego to alter in respect of the professional or functional background. A five point Likert scale is used from 1 = “very low” to 5 = “very high”.

Proximity is measured with a six point Likert scale from 1 = “another country” to 5 = “same floor” and 6 = “nearby”.

Duration of contact is measured with a four point Likert scale from 1 = “less than one year” to 4 = “5 years or longer”.

Organizational group is measured with a six point Likert scale from 1 = “inside same firm” to 6 = “inside same workgroup”

Multiplexity refers to the overlapping of different tie contents in a dyad. A relation can be uniplex to eightfold multiplex when all contents overlap.

Egocentered networks are restricted to information of ego and his alters. To overcome this limitation and to get an insight of the further integration of alters in the organizational network, I ask about the extent to which individuals have access to those who have the real power and influence in the organization (power access of alter). I use a 5 point Likert scale from 1 = “not at all” to 5 = “to a great extent”.

To describe the structural position – structural holes in this case – of ego in the network, not only the direct relationship of ego to his alters is required but also the indirect ties between them. Structural holes can be measured by the amount of closure in the network, determined by aggregate constraint. Constraint is a concentration index and sums up the dyadic constraints for each ego. Constraint can be considered as a measure of an actor’s inability to span structural holes. An actor is constrained if he has few contacts, the contacts are closely connected and share ties indirectly via a central contact. Constraint expresses the level of dependence on others.

Aggregate constraint is one possible measure for network closure. Another measure linked to network closure is hierarchy. This tend to be useful for calculating to what extent the constraint imposed on ego depends on either few (strong hierarchy) or alternatively all ties (weak hierarchy). [28]

3.3.2. Dependent variables. Career Success: Career success can be operationalized in one of two ways. The first includes variables that measure objective career success. This includes indicators that can be evaluated objectively by others, such as salary attainment and the number of promotions. The second way to operationalize career success includes variables that measure subjective career success and mostly use the evaluation of the beholder’s career. [29] The company analyzed consists of a flat hierarchy. Career progression does not necessarily imply grade shifts, nor do the job shifts coincide with career progression. Therefore I use a subjective indicator which combines self-referent subjective success and other-referent success. In the former, an individual compares his/her career relative to personal standards and aspirations, in the latter relative to an external standard like a reference group. It was measured with four items adapted from Kirchmeyer [30] and Turban & Dougherty [31] (on a 1-7 scale, from 1 = “not at all” to 7 = “very successful”). The scale is one-dimensional with a Cronbach’s Alpha of 0.875.

Influence is measured with a three item-scale which was used by Parker [32] and other work [e.g. 33]. The scale is adapted to the current organizational structure studied and contains the following items: Can you influence what goals and targets are set for your work area, your department and business unit respectively (on a 1-5 Likert scale, from “not at all” to “to a great extent”). The scale is one-dimensional with a Cronbach’s Alpha of 0.814.

The measures are used as z-score, which is used to harmonize variance across different scales.

3.3.3. Control Variables. I include age, employment level, gender and seniority as control variables. Age is measured as dummy. 69.4% are younger or equal 45 years. Employment level is a dummy with 87.5% working fulltime. 78.8% of the respondents are male. Seniority is measured in months.
4. Results

4.1. Network structure for career success and influence

Egocentered networks can be viewed as a multitude of single networks and can be analyzed to some extent with conventional software [34, 35]. Multiple regression analysis was used to examine relationships between the predictor variables and the success indicators.

See table 1 for the means, standard deviations and correlations. The mean values of the predictor variable are aggregated for each ego in his network and are entered in the regression analysis.

Table 2. Regression analysis predicting career success

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Step 1</th>
<th>Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controls</td>
<td>Independent variables</td>
</tr>
<tr>
<td></td>
<td>Coeff. (S.E.)</td>
<td>Beta</td>
</tr>
<tr>
<td>(Constant)</td>
<td>.054 (.188)</td>
<td>-.394 (.223)</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>-.216 (.151)</td>
<td>-.202 (.146)</td>
</tr>
<tr>
<td>Age (over 45 years)</td>
<td>.115 (.145)</td>
<td>.115 (.140)</td>
</tr>
<tr>
<td>Employment level (fulltime)</td>
<td>.138 (.185)</td>
<td>.075 (.180)</td>
</tr>
<tr>
<td>Seniority (months)</td>
<td>.003 (.076)</td>
<td>-.022 (.074)</td>
</tr>
<tr>
<td>Power access of alter</td>
<td>.122 (.058)</td>
<td>.122 *</td>
</tr>
<tr>
<td>Professional closeness</td>
<td>.144 (.060)</td>
<td>.143 *</td>
</tr>
<tr>
<td>Tie-Strength</td>
<td>.146 (.059)</td>
<td>.145 *</td>
</tr>
<tr>
<td>Network constraint</td>
<td>-.926 (.379)</td>
<td>-.143 *</td>
</tr>
</tbody>
</table>

R² | .010 | .096 |
Adj. R² | -.004 | .070 |
df | 283 | 279 |
F-statistics | .683 | 3.684 *** |
N | 288 | 288 |

* p < .05; ** p < .01; *** p <= .001 (two-tailed tests)
Dependent variable: Career success
The table presents unstandardized regression coefficients, with standard errors in parentheses, and standardized coefficients on the following lines.

Table 2 provides results of the linear regression analysis predicting career success. Gender, age, employment level and seniority are used as control variables (step 1). The R² increase attributable to adding the predictor variables (step 2) was statistically significant at the 1 percent level (F-change = 3.001, p > 0.001), thereby suggesting the predictive relevance of the variables to the model. The control variables were not significant.

Table 3. Regression analysis predicting influence

<table>
<thead>
<tr>
<th>Model 2</th>
<th>Step 1</th>
<th>Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controls</td>
<td>Independent variables</td>
</tr>
<tr>
<td></td>
<td>Coeff. (S.E.)</td>
<td>Beta</td>
</tr>
<tr>
<td>(Constant)</td>
<td>-.202 (.186)</td>
<td>.180 (.215)</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>.158 (.150)</td>
<td>.184 (.141)</td>
</tr>
<tr>
<td>Age (over 45 years)</td>
<td>-.009 (.144)</td>
<td>-.004</td>
</tr>
<tr>
<td>Employment level (full time)</td>
<td>.099 (.184)</td>
<td>.033</td>
</tr>
<tr>
<td>Seniority (months)</td>
<td>.094 (.076)</td>
<td>.083</td>
</tr>
<tr>
<td>Power access of alter</td>
<td>.268 (.056)</td>
<td>.269 ***</td>
</tr>
<tr>
<td>Professional closeness</td>
<td>.162 (.058)</td>
<td>.162 **</td>
</tr>
<tr>
<td>Tie strength</td>
<td>.078 (.057)</td>
<td>.078</td>
</tr>
<tr>
<td>Network constraint</td>
<td>-.1005 (.366)</td>
<td>-.156 **</td>
</tr>
</tbody>
</table>

R² | .014 | .148 |
Adj. R² | .000 | .123 |
df | 283 | 279 |
F-statistics | .973 | 6.049 *** |
N | 288 | 288 |

* p < .05; ** p < .01; *** p <= .001 (two-tailed tests)
Dependent variable: Influence
The table presents unstandardized regression coefficients, with standard errors in parentheses, and standardized coefficients on the following lines.

Table 3 provides the linear regression analysis predicting influence. The R² increase attributable to adding the predictor variables was statistically significant at the 1 percent level (F-change = 5.076, p > 0.001). The control variables were not significant.
Table 1. Means, standard deviations and correlations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>S.D.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (78.8% m, 21.2% f)</td>
<td>.41</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Age (dummy, > 45 years = 30.6%)</td>
<td>.46</td>
<td>.178**</td>
<td></td>
</tr>
<tr>
<td>Employment level (dummy, fulltime = 87.5%)</td>
<td>.33</td>
<td>.215**</td>
<td>.046</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seniority (in months)</td>
<td>124.48</td>
<td>81.60</td>
<td>.128*</td>
<td>.447**</td>
<td>-.095</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power access of alters</td>
<td>3.18</td>
<td>.75</td>
<td>-.036</td>
<td>.006</td>
<td>.033</td>
<td>.054</td>
<td>.077</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional closeness</td>
<td>3.67</td>
<td>.65</td>
<td>.071</td>
<td>.007</td>
<td>.136**</td>
<td>-.050</td>
<td>.077</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tie-Strength</td>
<td>2.21</td>
<td>.37</td>
<td>-.027</td>
<td>.033</td>
<td>-.026</td>
<td>.080</td>
<td>.123*</td>
<td>.149*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network constraint</td>
<td>.33</td>
<td>.15</td>
<td>.004</td>
<td>.022</td>
<td>.016</td>
<td>-.056</td>
<td>.049</td>
<td>.158**</td>
<td>-.124*</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Career success</td>
<td>5.08</td>
<td>.97</td>
<td>-.069</td>
<td>.040</td>
<td>.029</td>
<td>.010</td>
<td>.147**</td>
<td>.150*</td>
<td>.200**</td>
<td>-.132*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Influence</td>
<td>2.5</td>
<td>.99</td>
<td>.082</td>
<td>.046</td>
<td>.039</td>
<td>.086</td>
<td>.284**</td>
<td>.173**</td>
<td>.157**</td>
<td>-.129*</td>
<td>.443**</td>
<td>1</td>
</tr>
</tbody>
</table>

N = 288, ** p < .01, * p < .05 (two-tailed)

Table 4. Mean of z-scores in different networks (analysis of dyads)

<table>
<thead>
<tr>
<th>Tie content</th>
<th>Task-related communication</th>
<th>Advice seeking</th>
<th>Advice giving</th>
<th>Buy in</th>
<th>Social support</th>
<th>Strategic information</th>
<th>Organizational culture</th>
<th>Vocational development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power access alter</td>
<td>-0.027</td>
<td>0.037</td>
<td>-0.070</td>
<td>0.211</td>
<td>0.257</td>
<td>0.475</td>
<td>0.387</td>
<td>0.499</td>
</tr>
<tr>
<td>Professional closeness</td>
<td>0.282</td>
<td>0.446</td>
<td>0.364</td>
<td>0.501</td>
<td>0.227</td>
<td>0.136</td>
<td>0.056</td>
<td>0.215</td>
</tr>
<tr>
<td>Tie-Strength</td>
<td>0.238</td>
<td>0.372</td>
<td>0.303</td>
<td>0.303</td>
<td>0.659</td>
<td>0.151</td>
<td>0.011</td>
<td>0.165</td>
</tr>
<tr>
<td>Hierarchy alter</td>
<td>-0.043</td>
<td>0.008</td>
<td>-0.192</td>
<td>-0.001</td>
<td>0.237</td>
<td>0.343</td>
<td>0.483</td>
<td>0.649</td>
</tr>
<tr>
<td>Proximity</td>
<td>0.098</td>
<td>0.179</td>
<td>0.230</td>
<td>0.412</td>
<td>0.168</td>
<td>0.110</td>
<td>-0.061</td>
<td>0.024</td>
</tr>
<tr>
<td>Multiplexity</td>
<td>0.387</td>
<td>0.793</td>
<td>0.570</td>
<td>0.836</td>
<td>1.027</td>
<td>0.709</td>
<td>0.579</td>
<td>0.807</td>
</tr>
<tr>
<td>Organizational group</td>
<td>0.262</td>
<td>0.344</td>
<td>0.506</td>
<td>0.689</td>
<td>0.307</td>
<td>0.348</td>
<td>0.108</td>
<td>0.219</td>
</tr>
<tr>
<td>Duration of contact</td>
<td>-0.057</td>
<td>0.018</td>
<td>-0.096</td>
<td>-0.165</td>
<td>0.155</td>
<td>0.041</td>
<td>0.224</td>
<td>0.288</td>
</tr>
</tbody>
</table>

N = 1781-1865 1080-1136 1353-1399 971-990 683-726 1096-1131 1018-1106 738-808
In support of H1, structural holes have a positive effect on career success and influence. In partial support of H2, strong ties have a positive effect on career success, but don’t predict influence. Hypothesis 3 predicted that professional closeness would increase career success and influence and can be accepted. Power access of alters have a positive impact on career access and to an even greater extent on influence.

Further models (not listed here) including network size and network hierarchy (see structural hole measures) worsen the fit of the models and decrease the F-change.

4.2. Cluster analysis of network ties

The analysis of the dyads will give a further insight into the structuring of different networks. Z-scores of the mean structural properties of the dyads for the different tie contents are calculated (see table 4). A hierarchical cluster analysis with squared Euclidean dissimilarity is conducted with these scores in order to group networks with similar structural properties. Clusters with the greatest similarity are joined step by step (see Figure 2). On the x-axis the transformed distances ranging from 0 to 25 are displayed.

Cluster 1 refers to task-related communication and important persons for support in terms of buy-in. The ties are established with professional close persons and comprise mostly strong ties. Nevertheless, the ties have not been in existence for long. The connections are established horizontally on the same hierarchical level (with the exception of advice giving which connects to subordinates) and don’t connect with influential persons. The persons belong to the same division and are mostly located close to ego. As Monge & Eisenberg [36] showed, co-location has a positive effect on the tie strength.

Cluster 2 contains strategic ties and ties that transmit norms and values like organizational culture. The cluster consists of persons who are connected to influential others and provides strategic information and vocational development. It is a weak-tie-network which connects to people with other professional backgrounds outside their own division and provides links to higher hierarchies.

Cluster 3 comprises ties of personal support. They can be identified as friendship ties and are not supposed to affect the work outcomes directly. They are associated with job satisfaction [37] and organizational commitment [38]. The ties are very strong. But they don’t connect exclusively with professional and spatial close persons.

5. Discussion

While it is generally accepted that managerial action and performance are socially embedded, there is also consensus that we still know too little about the micro-sociology of productive social exchange [39]. Social network research has grown in prominence among organizations scholars because it promises to illuminate such productive social
exchange. This study contributes to the understanding of individual-level network consequences. It deals with network structure, tie characteristics, and relational content to explain their impact on career outcomes and influence.

Much as Burt [3] predicts, managers who maintain more diverse or non-redundant networks of contact are likely to reap benefits. Such networks offer managers both an information advantage (i.e., multiple sources of information, perspective, and know-how) and a control advantage (i.e., Simmel’s tertius gaudens [40]).

On the other side, such networks are not beneficial for all issues. Networks with structural holes should be combined with tie properties such as strong ties and professional closeness. More complex and tacit knowledge is more likely to be passed along strong as opposed to weak ties. While weak ties facilitate search, stronger ties provide a better conduit for actually transferring and exchanging complex issues and ideas [5]. To the extent that performing one’s job and problem solving involve exchanges of more complex and tacit knowledge – as it is probably in knowledge intensive organizations – relational characteristics in terms of strong ties play an important role. A different functional background of actors results in communication difficulties. The knowledge of actors needs a certain amount of similarity to successfully connect with each other and to promote a common understanding of problems or solutions. Professional closeness decreases cognitive asymmetries and ensures the required congruence of knowledge for successful collaboration and coordination.

The cluster analysis of the ties indicates that resources are gained through different network characteristics. Work-related resources such as advice, buy-in and work-related communication are gained through strong ties which connect ego on the same hierarchical level to co-located actors of the same division. Organizational norms and strategic related information are gained through a weak-tie network of well-connected actors of higher hierarchies and of different professional background.

To sum up, this study emphasizes the usefulness of breaking down the concept of networks and network relations into its structural and relational components and in regard to tie content. While the structural view of networks offers a glimpse into the instrumentality and reach of social relations, the relational view emphasizes the quality of exchange. This study tempers the excessive faith in network structure alone. Rather, these results revealed that maintaining some degree of closeness is of particular value. Therefore, managerial attention may go to form networks with structural holes, but then thickening and deepening single ties. Moreover, the analysis of the content emphasizes the importance of different structural properties being beneficial for obtaining distinct resources.

6. Limitations

This study raises questions of limitations, however. First, egocentered networks hide the view of an organization-wide network. Complete network data are desirable, to reduce measurement error and bias in respondent’s assessments of alter-alter relations [41]. The collection of full network data remains a challenge, particularly in settings where networks are large.

Second, problems of reverse causality cannot be ruled out. This is a limitation of cross-sectional data. The shifting to longitudinal data in network analysis will help to partial out the influence of past performance on network variables.

Third, the hypotheses directly connect the network structure with outcomes such as career and influence. While this is a common approach in network theory [42], one can state that it would be preferable to actually measure the link between networks to information acquisition and knowledge exchange and from these variables to career and influence. However, the advantage of network theory lies in an elaborating theory of the consequences of structure for outcomes. If we can measure the condition directly, in this case among other things the flow of information and the transfer of implicit knowledge, there is no need for network analysis [42].

Finally, this study takes place within a single corporation in a Swiss knowledge-intensive service organization. The results may not generalize to other settings.

7. Conclusion

Career success is a concern not only to individuals but also to organizations because employees' personal success can eventually contribute to organizational success [43]. My findings highlight the importance of network ties and network structure in understanding career success and influence. This study draws attention to the productive role of network ties at the workplace. It shows that the achievement of particular goals – here these are influence and career outcomes – not only requires networks of a particular structure, or ties with a specific content. Rather the intersection of
network structure, tie quality and tie content needs to be considered.

8. References

