Time Pressure, Cultural Diversity, Psychological Factors, and Information Sharing in Short Duration Virtual Teams

Souren Paul
Graduate School of Computer & Information Sciences
Nova Southeastern University
Fort Lauderdale, Florida 33314-7796
spaul@nova.edu

Fang He
Peabody Energy
Risk Management Group
St. Louis, MO 64101
helen0908@yahoo.com

Abstract
The purpose of this research is to examine whether time pressure and cultural diversity influence psychological factors (i.e. motivation, and trust) in virtual teams. We also examine if the psychological factors shape information sharing in these teams. Results of a laboratory experiment on virtual teams indicate that teams exhibited higher motivation and trust under time pressure, and both motivation and trust, in turn, have a positive relationship with information sharing. We also find that national cultural diversity has negative relationship with information sharing. However, information sharing is found to be unrelated to solution quality. Additional statistical analyses demonstrate that sharing of process information is positively related to solution quality.

1. Introduction

With globalization of business, virtual teams have become almost indispensable for global business organizations. The term “virtuality” has been characterized as a combination of reliance on electronic media and physical dispersion among members [6, 15, 27]. In many instances, the virtual teams are ad-hoc and are of short duration. Short duration project teams, ad-hoc groups of domain experts formed to solve some specific technical problem, are some common examples in this regard. Short-duration virtual teams play crucial role in emergency response situations. These teams are usually subjected to time pressure to complete the assigned tasks. Dube and Pare [12] suggest that developing trust, cohesion and building relationships are difficult in short-duration virtual teams. De Pillis and Furumo [9] find that for projects of short duration, virtual teams have lower performance than face-to-face teams. Thus, it is important to understand how the members of short-duration virtual teams develop trust and motivation, share information, and perform assigned tasks.
can lead to distrust and disappointment. When team members are dispersed, it is difficult to create the bonds of cohesion that can lead to trust and motivation based on assessments of ability, benevolence and perceived inclusiveness.

The purpose of this study is to examine if time pressure and cultural diversity impact information sharing through a set of psychological factors. Effective sharing of information is an important aspect of group work. In situations where group members hold unique information to solve a problem, effective communication and information exchange are crucial to the timely completion of the task [2, 42].

The results of our study indicate that teams under time pressure exhibit higher motivation and trust than their counterparts that are not subjected to time pressure. In addition, we find that cultural diversity adversely affects information sharing in the teams. We also find that both motivation and trust have positive relationships with information sharing.

In the following Section, we discuss the research model and hypotheses linking time pressure and cultural diversity to information sharing through psychological factors, and describe how information sharing affects the quality of solution. Next, we describe the research methodology and present the findings of the study. We conclude with the discussion of our findings and implications for future research.

2. Literature review and theory development

As shown in Figure 1, we anticipate that time pressure and cultural diversity affect psychological factors (motivation and trust) which in turn, influence information sharing in virtual teams. Solution quality is influenced by information sharing in these teams.

2.1. Psychological factors

In this research, we focus on psychological factors such as, motivation and trust that are relevant for short duration virtual teams. Behavioral factors structure the transformation process of work [39]. Relationship building in a team involves interaction processes designed to increase feelings of belonging to the team [40]. Once team members perceive the inclusiveness, they are motivated to perform a better job; otherwise, their motivation for putting their best effort can fall by the wayside. As a result, members who are made to feel responsible for the teamwork will be intrinsically motivated to share information effectively and facilitate relationship building. Trust involves interpersonal relationship building and plays a key role for effective information sharing in virtual settings. Trust occurs when a person is confident in and willing to act on the basis of the actions and decisions of others in the team [30]. Trust have been considered as critical in managing people who cannot meet face-to-face [17]; it facilitates effective interactions when members are willing to open themselves to each other and cooperate to solve a problem [23]. If team members distrust each other, they may refuse to cooperate or make contributions essential to team performance [8].

2.2. Time pressure

Time pressure has been commonly operationalized as the time available to perform a task [22] and can be applied either in objective or subjective manner. Time pressure can be operationalized objectively by imposing different levels to time constraint, such as low or high. Subjective time pressure, on the other hand, is manipulated in some studies by emphasizing the importance of speed of decision process, or by using stopwatch to make time more salient [24, 25]. Comparing with actual time limits, subjective time pressure has been more widely researched for teamwork since finding that group members who believe they are working under time pressure are underperformed is more interesting than finding that group members are underperformed when given less time to do the work [25]. Given that the manipulation of the amount of available time may significantly influence the amount of information exchanged in virtual teams and therefore make the information sharing among teams less comparable, we only focus on subjective time pressure.

Kelly et al. [24] note that subjective time pressure decreases the systematic processing of task information, and thus leads to faster decisions. However, when time pressure is tied to psychological factors, some different conclusions may be drawn.
Time pressure increases task difficulty [22]. When an individual detects a potentially threatening stimulus for his goal, he will be the most motivated to achieve the goal [18]. The more negative impact the individual experiences, the greater the tendency to increase his motivation in the threatened goals. Thus, it can be suggested that time pressure motivates individuals to cope with the threat to their goals. Moreover, group members working under time pressure have to trust each other without conditions in order to do the work efficiently. Unlike in face-to-face interactions, it is harder for virtual team members to establish trust in a new working relationship due to the difficulty in assessing teammates’ trustworthiness without ever having met them [31]. However, short-lived teams can develop high trust following a swift trust model [23]. The swift trust model suggests that team members assume others are trustworthy and begin working as if trust were already in place while seeking confirming or disconfirming evidence during group working [35]; however, team members under time control have no time to gather such evidence but follow their initial assumption in trust. Thus,

H1: In short-duration virtual teams, members’ motivation will be higher in groups that are under time pressure than those that are not.

H2: In short-duration virtual teams, members’ trust will be higher in groups that are under time pressure than those that are not.

2.3. Cultural Diversity

The language and communication patterns of a team member are influenced by his/her culture. Culture is defined as the set of deep level values associated with societal effectiveness, shared by an identifiable group of people [29]. Culture plays a major role in information processing of individuals. Cultural values influence the perceptual filter through which an individual interprets information needed to make decisions [1, 21]. In a cross-cultural virtual team, members analyze and interpret facts using the cues provided by their respective cultures. Two types of cultural difference may prevail among the members of the virtual teams: difference in national and organizational cultures. In this study, we focus on national cultural diversity in the virtual teams.

National culture is the collective programming of the mind, which distinguishes one group or category (nation) from another [21] and it helps us understand why the people from different countries may think, feel and behave differently when faced with problems. Hofstede identified five major dimensions of national culture along which the people of different countries differ. These dimensions are individualism/collectivism, power distance, uncertainty avoidance, masculinity femininity, and long-term orientation and short-term orientation. Because of the differences of the individual members along these dimensions, the virtual teams have national cultural diversity.

The people of different cultures bring a variety of perspectives and outlooks to a task. The differences in the perspective offer potential for multicultural teams to perform well [33, 48]. Diversity also reduces the probability of groupthink [1]. However, prior literature reports some negative effects of diversity. Diversity increases the complexity of group work [1]; has negative impact on communication and interpersonal attraction [1]. The cultural values influence group members’ preferences for social interaction norms [4, 13]. Thus, multicultural groups find cooperative decision-making difficult [26, 48].

Members of virtual teams interact with the help of collaborative technology. IT- enabled relationships that are ad hoc, temporary, and not tied to a known physical location, are void of prior social history. In these relationships, trust may not reach the same level that can normally be attained in face-to-face interactions [28]. Cultural distance is greater when members of two cultures speak very different languages, have different social structures, religions, standards of living, and values [47]. Perceived similarity results in positive emotions and inter-group attitudes while perceived dissimilarity has the reverse set of consequences [46]. The situation appears to be more complex for virtual teams as cultural diversity becomes an additional barrier in formation of trust.

Thus, we expect cultural diversity to hinder the development of favorable trust and motivation among the members of short-duration virtual teams and we hypothesize:

H3: In short-duration virtual teams, national cultural diversity will have a negative relationship with the motivation of the team members.

H4: In short-duration virtual teams, national cultural diversity will have a negative relationship with the trust of the team members.

2.4. Information sharing

Information sharing is an important condition for organizational knowledge management [41]. Gunawardena, Lowe, and Anderson [16] propose that the active construction of knowledge moves through five phases: 1) Sharing/comparing of information, 2) Discovering and exploring of dissonance or inconsistency among ideas, concepts, or statements
advanced by different participants, 3) Negotiation of meaning and/or co-construction of knowledge, 4) Testing and modification of proposed synthesis or co-construction, and 5) Phrasing of agreement, statement, and applications of the newly constructed meaning. Embedded in these phases, information sharing can be viewed as a cyclic process to create and disseminate knowledge: from information distribution (corresponding to the phase 1) to information explanation (including phase 2-4), and then to information application (corresponding to the phase 5).

The messages communicated for information sharing therefore can be divided into three types: 1) task information distribution, 2) task information explanation, and 3) process information not for distribution and explanation but for context needed. In this study, all three types of messages are counted to measure information sharing. While motivation and trust are important psychological factors that facilitate information sharing, it is less likely that distracted members will have high volume of information in group work. Thus,

H5: In short-duration virtual teams, the greater the motivation of team members, the higher will be their sharing of information.

H6: In short-duration virtual teams, the greater the trust of team members, the higher will be their sharing of information.

Cultural diversity has negative impact on communication and interpersonal attraction (Adler, 1990). Culturally diverse teams have diversity in processing situational information. We expect these teams to have problem in sharing information effectively. Thus,

H7: In short-duration virtual teams, national cultural diversity will have a negative relationship with the sharing of information.

2.5. Problem-solving outcome

Prior research on virtual teams has focused on the performance variables, such as decision quality, number of ideas generated, member satisfaction, perceived decision quality, participation, and agreement [3, 5, 38]. In this study, we exclude perceptual measures of the process satisfaction and focus on an objective assessment of the solution quality. Prior virtual team research reports that effective information sharing or effective communication, as part of task process, is positively associated with outcomes in terms of performance and satisfaction [40]. We therefore hypothesize a positive relationship between information sharing and outcomes of the virtual teams.

H8: In virtual teams, the higher the level of information sharing among the teams members, the higher will be the quality of the final solution.

3. Research methodology

3.1. Subjects

A total of 72 students (62.5% graduates, and 37.5% undergraduates) majored in business, computer and engineer from a large Midwestern university in the United States were involved in the research. On average, they were 24 years old and had 2 years of work experience. All subjects were volunteers and received extra credit for their participation. Subjects were randomly assigned to 24 teams, with 3 members in each. Teams were then randomly assigned to treatments.

3.2. Variable identification

This study involved two independent variables (i.e. time pressure and national cultural diversity) and four dependent variables (motivation, trust, information sharing, and solution quality). Trust and motivation the teams were measured using 5-point Likert scale questionnaires. Four items developed by [30] were used to measure trust. Motivation was measured by 4 items (table 1). We used objective measures to calculate the other variables used in this study. The questionnaire items measuring trust and motivation are listed in Table 1.

National Cultural Diversity: We collected the demographic data of each participant, which was used to calculate national cultural and educational diversities. The participants indicated their nationalities and areas of specialization (i.e. majors). Each nationality was considered as a category of national culture. Similarly, each area of major was considered as a category of educational specialization. Following the standard approach for categorical variables, we calculated entropy-based index [45] to measure national culture and functional diversities. The entropy-based index was calculated as:

$$\text{Diversity} = \sum P_i \ln(P_i),$$

Where, P_i indicates the proportion of group members belonging to each category of diversity. Thus, if all three members of a group were U.S. nationals, the national cultural diversity index would be 0.000. In a group that had two U.S. and one Indian nationals, the diversity index was calculated as 0.637.

Information sharing: Information sharing was measured by using parsing rules adapted from
Based on a review of parsing rules, a graduate student, who was blind to our conditions, counted each piece of information shared by members. The total number of process information, task information in distribution and explanation was served as our measure of information sharing.

Solution quality: Each ER diagram was evaluated by a database expert. Points were assigned for correct identification of the entities, attributes, relationships, and cardinalities. Points were also assigned for the overall ER diagram.

Table 1. Summary of Measurement Scales

<table>
<thead>
<tr>
<th>Construct</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trust</td>
<td>• We can freely share our ideas, feelings, and hopes.</td>
</tr>
<tr>
<td></td>
<td>• If I shared my problems with my members, I know they would respond constructively and caringly.</td>
</tr>
<tr>
<td></td>
<td>• My members approached their jobs with professionalism and dedication.</td>
</tr>
<tr>
<td></td>
<td>• I can rely on my members not to make my job more difficult by careless work.</td>
</tr>
<tr>
<td></td>
<td>Scale: 1 (Strongly disagree) to 5 (Strongly agree)</td>
</tr>
<tr>
<td>Motivation</td>
<td>• I was motivated to perform better in the teamwork.</td>
</tr>
<tr>
<td></td>
<td>• I feel enthusiasm about the teamwork.</td>
</tr>
<tr>
<td></td>
<td>• As a team, we tried our best to do the work.</td>
</tr>
<tr>
<td></td>
<td>• The more effort we put into the project, the more we gained from the teamwork.</td>
</tr>
<tr>
<td></td>
<td>Scale: 1 (Strongly disagree) to 5 (Strongly agree)</td>
</tr>
</tbody>
</table>

3.3. Task description

The task chosen for this study is a problem-solving task that has a demonstrable correct answer. Problem-solving tasks are different from decision making tasks [32]. A problem-solving task has a demonstrable correct answer whereas a decision making task has a solution that is reflects the collective preference of group members.

Given that all participants have the learning experience of database management and application, the task chosen was to design a data model (Entity Relationship Diagram) for a database application. Each participant was provided with one page of introduction paper which listed four pieces of unique information on the entities, attributes, cardinalities, and relationships that should be used for designing the database. The unique information provided a partial specification of the database. None of the members was provided with a complete specification of the database. The participants had to exchange information to develop complete understanding of the database. The participants were asked to share information anonymously and synchronously and draw an entity relationship diagram (ERD) by using ER Assistant 2.10, a CASE tool. The ERD was the final solution provided by the group. Stasser [43] used similar type of hidden profile tasks (i.e. where each group member has unique yet complimentary information) to examine information sharing. This type of task is important for group laboratory research because it simulates an important characteristic of “real-world” tasks where each member holds unique information [34].

3.4. Collaboration tool and training

The tool used in our experiments was Lotus Sametime, a type of software for group collaboration over the Internet. As a synchronous groupware application, Sametime facilitates communication among geographically dispersed coworkers. The tool provides support on text message exchange, screen sharing, program sharing, whiteboard, audio-conferencing, video-recording, and allows for voting on and ranking of the solution. Subjects were scheduled into four one-hour training sections to be orientated to the phases of the experiment and features of the software as well as the CASE tool used in the experiment.

3.5. Experimental procedures

The laboratory manipulation of time pressure was carried out following the procedure suggested by Kelly and Loving [25]. The teams under time pressure were told to make decision quickly each 20 minutes: “Since it is very important to do the project efficiently, you need to come up with your solution quickly,” and in order to make time more salient, after each 10 minutes they were informed of the remaining time. Thus, these teams experienced subjective time pressure.

Members in each group were assigned to three different rooms and work on laptop workstations equipped with a mouse. One of the researchers acted as the facilitator from a separate room and monitors the group work. The activities experienced by groups included: (1) Group members participated in a
discussion and distributed several pieces of information on hand. (2) Group members selected one from within the group to draw the ERD (referred to as Drawer). The drawing process was observable by other members at same time. The other members could not directly modify the diagram but ask the drawer to do so. (3) Once the group finished the ERD, the group members completed a posttest questionnaire that collected demographic data and psychological factors. A screen from a group session showing the final solution is presented in appendix 1. All teams were given 60 minutes to finish the process before being surveyed. According to the two pilot studies conducted on graduate students, 60 minutes were long enough to complete the first two activities associated with the study.

4. Results
4.1. Reliability and validity

In Table 2 we present the reliability statistics for the constructs used in the study. Nunnally [36] suggests that a reliability of a construct between 0.60 and 0.80 should be acceptable. Therefore, we consider an alpha value of 0.60 as the cut-off value. As shown in Table 2, after dropping two indicators items of trust and one indicator item of the process satisfaction, the reliabilities of all constructs are between 0.69 and 0.89, thus passing the test of construct reliability. Fornell and Larcker [14] propose that the average variance extracted from a construct should exceed 0.50. As Table 2 indicates, the average variance extracted from each construct exceeds 0.50.

<table>
<thead>
<tr>
<th>Table 2. Convergent validity test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructs</td>
</tr>
<tr>
<td>Motivation (with 4 indicator items)</td>
</tr>
<tr>
<td>Trust (with 2 indicator items)</td>
</tr>
</tbody>
</table>

a Construct reliability is estimated using Cronbach’s \(\alpha \) coefficients.
b Portion of variance extracted is estimated by computing, squared sum of factor loadings/number of factors of the underlying construct.

4.2. Hypothesis testing

The hypotheses were tested using Analysis of Variance (ANOVA) and regression analyses with a level of significance of 0.05. Any weak significance level in the range of .05 to .10 was treated as suggestive of the nature of relationship between the variables. SAS software was used for the statistical analyses.

The results of ANOVA demonstrate that groups having time pressure have higher motivation. We did not find any support for hypothesis 3 and 4 which link cultural diversity with psychological factors. Although both time pressure and cultural diversity are included in the same General linear model (GLM) for ANOVA, table 3 presents the results for hypothesis test 1. We find that the negative relationship of cultural diversity with psychological factors is not significant (\(\beta_{\text{motivation}}=0.063 \) and \(p_{\text{motivation}}=0.704; \beta_{\text{trust}}=-0.161 \) and \(p_{\text{trust}}=0.414 \)).

Next, we tested whether the psychological factors have relationship with information that is shared among the members in each group and the solution quality. We regressed information sharing on motivation, trust, and cultural diversity. As shown in table 4, we have not found any support for hypotheses 5 and 6. However, we find support for hypothesis 7.

<table>
<thead>
<tr>
<th>Table 3. Means and Standard Deviations of Dependent Variables and Results of ANOVA – [Treatment: Time Pressure]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
</tr>
<tr>
<td>Time Pressure</td>
</tr>
<tr>
<td>Motivation</td>
</tr>
<tr>
<td>Trust</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4. Results of regression analyses for problem-solving outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Variable</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>Motivation</td>
</tr>
<tr>
<td>Trust</td>
</tr>
<tr>
<td>Cultural Diversity</td>
</tr>
<tr>
<td>R-Square</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>Prob. (F)</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Hypotheses</td>
</tr>
<tr>
<td>Supported?</td>
</tr>
<tr>
<td>H7: Yes</td>
</tr>
</tbody>
</table>

* p<0.10; ** p<0.05; *** p<0.01; **** p<0.001
As the overall regression model is statistically significant (p=0.005), we wanted to ensure that the regression results are not distorted because of multicollinearity among the independent variables. We find that the average variance inflation factor (VIF) across all motivation and trust in the regressions is 2.06, which indicates that multicollinearity may exist across the predictors. The existence of multicollinearity across the predictors (distraction, trust, and motivation) makes the coefficients estimated through ordinary least squares fit imprecise. We, therefore, had to use ridge regression, which is more appropriate than ordinary least squares regression in estimating regression coefficients when predictors are multicollinear [11, 19, 20]. By allowing a small amount of bias in the estimates, ridge regression can combat the influence of “multicollinearity” and help to obtain more reasonable coefficients [19]. This technique involves the introduction a small biasing parameter k in the model used for estimation. Our results indicate that the use of ridge regression may be useful in obtaining improved point estimates of the parameters of the research model. As shown in figure 2, motivation and trust have positive impact on information sharing in the teams. While interpreting the results from the each graph in figures 2, we focus on the portion of the graph in which the coefficient estimate seems to have stabilized.

Figure 2. Ridge Plot for Information Sharing

In order to test hypothesis 8, we regressed solution quality on information sharing in the teams. The positive relationship between information sharing and solution quality is not statistically significant (β=-0.007 and p=0.340).

5. Discussion

Our research suggests that virtual teams working under time pressure can be motivated to perform group task. Our findings find support in prior research on collocated and virtual teams [24, 25]. However, prior research did not consider the effect of outcome controls on psychological factors of virtual teams and tie the psychological factors to group performance. However, we find that time pressure does not improve trust in the teams. It therefore, appears that the swift trust developed in short-duration virtual teams is unaffected by time pressure. We also find that cultural diversity does not have any relationship with the psychological factors. This may have happened because the team members were focused on the task and did not find enough time to understand the exact nature of differences in the communication styles arising from cultural diversity. We believe that the nature of the experimental task contributed to lack of support for hypotheses 2, 3, and 4. Team members did not have to trust each other to share unique information and design the data model. We expect that the result will be different if the members are engaged in decision making task or a different variation of problem solving task.

We also find that psychological factors (motivation and trust) and cultural diversity influence information sharing in virtual teams. Due the influence of multicollinearity, no psychological factor is found to improve information sharing in virtual teams. We therefore conduct ridge regressions to improve the estimates. After examining the ridge plots, we find that motivation and trust have positive effect on information sharing. We also find that both motivation and trust are highly correlated (r=0.711, p=0.0001). As such, we conduct a factor analysis to determine whether the indicator items representing motivation and trust load on one factor. We find that all items when loaded on one factor have acceptable factor loadings; most of the loadings are above 0.75; only two items have relatively lower loadings, which are 0.50 and 0.58. The combined factor is considered as an independent variable and is referred as the psychological factor in this paper. Next, we regress information shared on the combined construct for psychological factor. We find that psychological factors have positive relationship with information sharing in the teams (β=58.1683 and p=0.022). This result together with the findings from the ridge regression analyses strongly imply that the psychological factors are related to information sharing in virtual teams.

We have not found any support for hypothesis 8. In order to explain this result, we have conducted
6. Conclusion
Although this study marks the beginning of research short-duration virtual teams, we can draw some conclusions from this research. We find that time pressure enhances motivation in short-duration virtual teams. We also find psychological factors enhance information sharing in virtual teams. Although national cultural diversity does not seem to affect the psychological factors in short-duration virtual teams, it has adverse effects on information sharing in these teams. Thus, it is important to manage cultural diversity in short-duration virtual teams.

We also find that sharing of process information improves solution quality. On the contrary, solution quality has a negative relationship with the sharing of explanation information. Providing many explanations of an activity or task may cause cognitive complexity and information overload. This is an interesting finding which should be investigated in future research.

10. References
[20] Hoerl, A.E., R.W. Kennard, ”Ridge Regression:

Appendix 1
The Screen Provided by a Group as the Final Solution

Appendix 2
A coding system for message classification
[Adapted from Connolly et al. [7]]

Parsing rules for message coding:
1. Text continuing should be coded as one unit.
2. Assign text into first category which shows a good fit (i.e., first try to assign as PI; if this fails, try as TI-D; etc.)

<table>
<thead>
<tr>
<th>Categories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Any text not covered in the introduction paper but related to the project is counted as process information, e.g., “You can write two labels on the line showing cardinality if you want”.</td>
</tr>
<tr>
<td>TI-D</td>
<td>Any text covered in the introduction paper is counted as task information. Any new task information covered in the introduction paper is coded as distributed information, e.g., “I have information about authors, which will be an entity”.</td>
</tr>
<tr>
<td>TI-E</td>
<td>Any old task information covered in the introduction paper is coded as explained information, e.g., “From book to publisher, I think the relationship is backward, the mandatory one should be on the other side”. For any old information, supportive statement (e.g., “You are right. It’s a weak entity”), confirmation (e.g., “That’s an easy enough relationship”), critical argument (e.g., “Branch number shouldn’t be added with book entity”), query statement (e.g., “sequence or sequence_no?”) are coded as explained information.</td>
</tr>
<tr>
<td>OTT</td>
<td>Text that are not related to the project and do not fit into the existing categories, e.g., “I didn’t have breakfast”.</td>
</tr>
<tr>
<td>UC</td>
<td>Uncodable text.</td>
</tr>
</tbody>
</table>