Organizational Social Computing and Employee Job Performance: The Knowledge Access Route

Hossam Ali-Hassan Dalhousie University hossam@dal.ca
Dorit Nevo York University dnevo@schulich.yorku.ca
Henry Kim York University hkim@schulich.yorku.ca
Stephen Perelgut IBM Canada perelgut@ca.ibm.com

Abstract
This paper presents an empirical study investigating the impact of organizational social computing on employees' innovative and in-role job performance. Specifically, we suggest that two key uses of social computing, representing the use of social computing tools for maintaining social relations and for generating and sharing content, are positively related to employees' access to knowledge. Access to knowledge, in the form of expertise location and access to codified information, is in turn positively associated with employees' innovative and in-role job performance. For this study a conceptual model is developed and tested via a cross-sectional survey. The findings suggest that the two key uses of organizational social computing are positively associated with access to knowledge which in turn is positively related to the two forms of job performance at varying degrees. Theoretical and practical implications are discussed, as are directions for future research.

1. Introduction
Knowledge workers have become the largest single group of the workforce even in developing countries [22,58]. In a knowledge-based economy, knowledge workers are vital to organizational growth and possibly the most important source of competitive advantage [22,58]. Despite their importance, however, knowledge workers’ job performance remains largely unexplored [22,23,25].

To support knowledge work, organizations employ a host of information systems among them are organizational social computing tools. According to Schuller (1994), social computing refers to the use of software applications as an intermediary or a focus for a social relation [64]. While many companies today are experimenting with social computing internally, it has limited proven benefits. McKinsey, a global consulting firm, has conducted three surveys between 2007 and 2009 on the use of Web 2.0 in around 2000 organizations worldwide [9,10,16]. Over this time period respondents reported an increase in the use of these tools inside the organization while at the same time expressing dissatisfaction, largely due to the lack of understanding of the potential impact of these tools, and how companies can leverage their investments.

In this paper we address the above gaps concerning the performance of knowledge workers as well as the business impact of organizational social computing by exploring the link between the two. Specifically we conceptualize and empirically test a link between specific capabilities of social computing to knowledge workers’ job performance. Social computing is expected to impact individuals’ job performance by increasing their access to expertise and information, hence increasing the likelihood of new knowledge creation and improving their level of performance [53,74].

The paper begins by introducing the key constructs of the study, followed by a conceptual model development and description of the empirical study conducted at an international Information Technology company. We present our insights from the study in the concluding section.

2. Definitions
This section offers a brief overview of the main constructs of our study namely knowledge workers’ job performance, knowledge access, and social computing use.

2.1 Knowledge worker performance
Davenport [22] describes knowledge workers as workers who “have high degree of expertise, education, or experience, and the primary purpose of their jobs involves the creation, distribution, or application of knowledge” (p. 217). Knowledge
workers’ performance is determined by their ability to get advice and information to solve novel, challenging problems [40,46,69]. Interestingly, studies show that knowledge workers’ most valuable information actually comes from other people in their social network [22]. Other determinants of knowledge workers’ performance are their commitment to work, continuous learning, reflection and creative thinking, and the support of a network of people who know and respect their work [22].

Katz [46] conceptualized job performance as consisting of two components, the in-role component and the innovative component. In-role job performance represents performance on job-related tasks which are mandated, coordinated and rewarded by the organization and are set to meet organizational goals [40]. Innovative job performance deals with problems, opportunities and unusual situations [40]. It is to some degree an extra-role performance based on discretionary behavior beyond the formal job description [69]. Innovative job performance incorporates idea generation, activation of the drivers of innovation, coalition building, acquisition of the power necessary to move the idea into reality, idea realization and production of innovation model, and transfer or diffusion of the model [45]. These tasks are performed by individuals concurrently or in sequence and represent the core of innovation in organizations.

Our model (depicted in Figure 1) explores the specific impact of having access to knowledge on knowledge workers’ job performance. We explain what is meant by “knowledge access” next.

2.2 Knowledge access

Knowledge may be embedded in organizational routines, procedures, products, processes, equipment, and culture, or it may reside in individual employees and teams [6,49,77]. Defining knowledge has been elusive and many definitions and classifications exist in the literature. In this study we address two specific types of knowledge: explicit information and human expertise. This approach is similar to the distinction between knowledge stocks, or repositories of codified knowledge and knowledge flows, or knowledge sharing through person-to-person contact [31,37]. In doing so, as much as possible, both the tacit and explicit dimensions of knowledge [62] are captured.

Human expertise can be reached in a two-step process consisting of first identifying or locating relevant experts and then selecting the expert to consult [55]. There is no widely accepted definition for expertise [66] although, in general, an expert is considered someone who possesses an element a knowledge seeker wants, and who is also able to transfer that element to the seeker. Factors that may play a role in selecting an expert, beyond their immediate knowledge, include, for example, timely access to the expert, a degree of safety in the relationship, and the expert’s willingness to engage [19].

Beyond human expertise, information can also be accessed through repositories such as databases [43], documentation, corporate intranets [80], information portals, blogs [39], wikis [54], tags [21], and others.

In sum, in this study knowledge is treated as the combination of human expertise and explicit information, and access to knowledge is defined as the ability to locate and approach both types of knowledge through expertise location and codified information access. Such access, we argue, is enhanced by the support of specific social computing capabilities.

2.3 Social computing

Social computing is defined as “applications and services that facilitate collective action and social interaction online with rich exchange of multimedia information and evolution of aggregate knowledge,” [61] (p.762). Social computing tools present a wide range from micro-blogging and tagging, to social networking sites, file sharing, and more.

A study by Ali-Hassan and Nevo [2] identified three key dimensions differentiating how social computing tools are used. Social use reflects the extent to which using the tools can support the development and maintenance of social relations. Hedonic use reflects the use of social computing for entertainment. And Generative use reflects using the tools to create and share collaborative content.

In this study, we explore the impact of social and generative use of social computing on knowledge workers’ job performance, as we explain in more detail next. Despite that the use of social computing for hedonic purposes has a potentially negative direct impact on job performance due to time inefficiency, it is not expected to have an impact on our mediator, knowledge access, and hence was left out for future studies.

3. Conceptual model and hypotheses

The research model is summarized in figure 1 and all paths and relationships are described next.
3.1 From social use to knowledge access

Using social computing to explicitly create and maintain social relations, either directly through the use of social networking application, or indirectly through communities of interest can increase the number of ties in a person’s network [12] and provide access to a larger pool of resources and expertise [18,78,79]. Moreover, Law and Chang [48] found that identity profiling and self-disclosure with personal information, photos, traits and so on, a functionality provided by many of the online social networking tools, provides opportunities for chance connections and new ties between individuals due to their increased visibility. Such self-identification and self-categorization can increase perceived similarities between individuals, leading people to build weak network ties with each other [27,48,72]. These weak ties, characterized by infrequent and distant relationships, span or bridge organizational units and become channels where knowledge or potential for knowledge flows [33,36].

The search for knowledge via network ties provides opportunities for accessing information and expertise throughout the organization. For example, the use of an internal social network site within an organization allows its users to create and maintain a set of heterogeneous connections providing access to information and opportunities not necessarily found in a user’s set of close-knit relationships [71]. Accordingly we hypothesize that:

H1: there is a positive relationship between social use of social computing and an employee’s access to knowledge

3.2 From generative use to knowledge access

Social computing tools used to generate and share content, such as wikis, Blogs, and internal videos, can be used as an information repository while at the same time help employees identify experts in the organization. An industry example comes from Shell, where a knowledge portal consisting of many wiki-based pages was adopted, enabling easier access to relevant information and proving to be a cost-effective means for collaboration [52].

Other examples include corporate wikis which are sometimes used explicitly for knowledge sharing in organizations [8,54], blogs which are used for information dissipation [26] and mashups which can aggregate and continuously update information from external sources [4]. Other applications which are rich in media, such as videos, are used for training and knowledge distribution [8].
The ease and simplicity by which most social computing tools support the generation and distribution of user content can also increase an individual’s visibility within certain communities or with the public in general. For example, an avid blogger covering Web 2.0 news and developments may quickly be recognized as the organization’s expert on the topic. With this exposure a person’s expertise is exposed and experts are identified. Moreover, critical “softer” qualities of the expert, such as his/her willingness to help or communications skills, are also important for identifying the right expert to solicit [19] and can also emerge from the use of such tools [57]. Working on a collaborative content generation tool like wiki, suggests not only how much an expert knows but also how eager he or she is to share knowledge, and how knowledgeable in the subject matter he or she is [57]. Based on the above we hypothesize that:

H2: there is a positive relationship between generative use of social computing and an employee’s access to knowledge

3.3 From knowledge access to job performance

In knowledge-intensive work, an individual employee’s in-role and innovative job performance depend largely on having access to relevant information either through codified repositories and portals, active knowledge sourcing, and knowledge reuse [3,32,37,53,75]. In knowledge-intensive work, job performance depends to a large degree on getting the right information to solve novel, challenging problems [20]. Greater access to information has been shown to empower employees, leading to higher levels of motivation, job performance and career success [65]. Even organizational performance can be improved by making relevant knowledge and information assets available to employees who need it [29,32].

Having access to information can affect in-role job performance through applying current knowledge to meet one’s job demands while innovative job performance can be affected by applying knowledge to develop creative solutions and innovations [74]. Innovation, such as the creation of a new product or service, is facilitated by having access to existing diverse ideas, previously unknown to an inventor [53]. This form of re-using existing knowledge to generate new knowledge, or to innovate, is also known as combinative capability [47,53] and is a critical competitive resource for organizations [30]. In the context of project management, access to information enhances performance by helping projects avoid duplication of efforts and by providing complementary information necessary to solve a problem [36].

Expertise location has also been linked to performance. The transactive memory literature discusses how individual members of a group serve as external memory aids to each other and are able to benefit from each other’s knowledge and expertise by developing a shared understanding of who knows what [44,50]. Being able to locate expertise enables groups to better utilize the knowledge that their members possess, and to reach higher levels of performance than they would otherwise [34,44,50]. Both field and laboratory research have found that groups whose members are aware of the knowledge and expertise of other group members perform better than groups whose members do not possess such knowledge [44,50,63].

In linking expertise location to innovative job performance, instrumental networks’ size or the number of connections to information sources, has been shown to have a positive effect on innovation [1,68] since in order to produce innovation, more sources of information and more angles on a problem are necessary [45]. Moreover, structural holes or unique ties to actors outside the social network can provide access to information, opportunities, diverse ideas, new communities and varying ideas, and knowledge, hence contributing to innovation [11,60]. According to Kanter [45], the idea generation and innovation activation processes require “cross fertilization” - the benefits from boundary spanners who bring expertise from the world beyond the team. Specifically, high-performing R&D teams have a higher communication with organizational colleagues outside the immediate group than low-performing teams [45].

Based on the above we hypothesize that:

H3: there is a positive relationship between an employee’s access to knowledge and his/her in-role job performance

H4: there is a positive relationship between an employee’s access to knowledge and his/her innovative job performance

4. Research methodology

A cross sectional survey of individual knowledge workers who use organizational social computing tools was conducted. The survey’s design and implementation are presented in this section.
4.1 Measures

The measurement instrument was developed using a multi-phase process of validation refinement [73]. An initial review of the literature to identify relevant scales and/or items was conducted, followed by the development of initial scales, a qualitative review by domain experts and four rounds of card-and Q-sorting [56]. Finally a pilot study was conducted with the target respondents’ population. After each stage the instrument was reviewed and adjusted, and the updated instrument was then used in the full-scale survey with 307 responses. Table 1 presents all scales used in this survey.

In addition to the constructs measured in the model, other demographic and control variables were measured in the survey. Human capital, demographic, and professional variables were deemed relevant controls given the constructs of interest [41,42,65,75]. Consequently data was collected on respondents’ education, professional tenure (number of years of work experience), organizational tenure and number of years in their current position, in addition to age, gender, title and country of residence.

Table 1: Survey Instrument

<table>
<thead>
<tr>
<th>Scale</th>
<th>Items</th>
<th>Adapted from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Use</td>
<td>In my organization, I use social computing to...</td>
<td>[2,15]</td>
</tr>
<tr>
<td></td>
<td>...create new relationships at work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...get to know people I would otherwise not meet at work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...maintain close social relationships with some colleagues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...get acquainted with colleagues who share my interests</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...discover colleagues with interests similar to mine</td>
<td></td>
</tr>
<tr>
<td>Generative Use</td>
<td>...share my know-how with colleagues</td>
<td>[2,7,76]</td>
</tr>
<tr>
<td></td>
<td>...create content in collaboration with colleagues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...create content for work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...share content for work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...be kept informed of my colleagues’ know-how</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...access content created by my colleagues</td>
<td></td>
</tr>
<tr>
<td>Information Access</td>
<td>Compared to others in my organization, I consider that...</td>
<td>[70,80]</td>
</tr>
<tr>
<td></td>
<td>...I can obtain the information necessary to do my job</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...when I need additional information to do my job, I usually get it</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...I have access to information I need to do my job well</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...the amount of information available to me is sufficient for me to make good decisions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...I have found that information is generally complete enough for me to make good decisions</td>
<td></td>
</tr>
<tr>
<td>Expertise Location</td>
<td>...I have a good “map” of my colleagues’ talents and skills</td>
<td>[44]</td>
</tr>
<tr>
<td></td>
<td>...I am aware of the skills and knowledge of many of my colleagues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...I know which colleagues have expertise in specific areas</td>
<td></td>
</tr>
<tr>
<td>Innovative job</td>
<td>How often do you perform the following work activities?</td>
<td>[40]</td>
</tr>
<tr>
<td>performance</td>
<td>Create new ideas for improvements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mobilize support for innovative ideas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Search out new working methods, techniques, or instruments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acquire management approval for innovative ideas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transform innovative ideas into useful applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generate original solutions to problems</td>
<td></td>
</tr>
<tr>
<td>In-role job</td>
<td>To what extent do you agree or disagree with the following?</td>
<td>[40]</td>
</tr>
<tr>
<td>performance</td>
<td>I always complete the duties specified in my job description</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I meet all the formal performance requirements of my job</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I fulfill all responsibilities required by my job</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I never neglect aspects of the job I am obligated to perform</td>
<td></td>
</tr>
</tbody>
</table>
4.2 Data collection

The sampling frame for this survey was a social computing community of interest of 1,700 members within an international Information Technology company. The members’ involvement in social computing varies from novice use to development. With more than 350,000 employees, in more than 150 countries, the company believes in the need to foster communication, collaboration and information sharing internally. As such it has allowed and even encouraged its employees to use social computing inside the organization. The company has over the past few years made openly available a number of social computing tools, such as blogs, wikis, tagging, and social networking, allowing their use to grow organically with minimal guidance or supervision.

After the pilot study, a total of 307 community members of the remaining 1,620 (total members minus pilot population) responded to the final survey, yielding a response rate of 18.95%, which is not atypical for a web survey. The pilot data was used for instrument validation and refinement purposes and was not included in the final analysis and the pilot population was excluded from the final survey invitation.

4.3 Data screening and analysis

The proposed model (figure 1) was tested using latent variable structural equation modeling (SEM). SPSS AMOS 17.0 was utilized to build and test the measurement and structural model. Prior to conducting the analysis, incomplete records and responses which missed the reversed questions were discarded and 264 records remained for further analysis. To check for bias due to the removal of the data, all responses on the constructs (mean of each construct) and demographics measures were compared and no significant difference was found between the two groups. Moreover, the normality of the data was checked to determine if any measures exhibited a range restriction or any irregularities which could be problematic. The mean, standard deviation, skewness and kurtosis were calculated for every item and control variable. An examination of the results did not indicate any major range restriction however a deviation from normality is observed for certain items, with high absolute values of skewness (lower than -1 or higher than +1) and kurtosis values [35], such as with some In-role Job Performance measures or items. In order to handle non-normal data, “the bootstrap” procedure was utilized in AMOS [13].

5. Results

5.1 Measurement model

The validity and reliability of the measurement instrument were assessed in multiple steps. The internal consistencies of the scales were examined by their item-total correlations and coefficient alphas [51]. The item-total correlations were all above the recommended value of 0.50 [35] for each scale, with the exception of in-role job performance with a low, yet still acceptable value of 0.47 [51]. The Cronbach’s alphas for all scales were above 0.816, considerably higher than the recommended 0.7 [35,59]. Exploratory factor analysis was conducted to further assess the construct validity of the scales [56]. With a maximum likelihood analysis with an oblique, Promax, rotation [17], all items loaded strongly on their factor, considerably more than on others’, indicating a general unidimensional structure of the instrument [35]. The exceptions were four items from different scales which were excluded from further analysis. In the second stage of measurement validation, a confirmatory factor analysis (CFA) was conducted to further assess the convergent and discriminant validity of all construct measures [28,51]. The outcome of the CFA cross-loading analysis showed that no item loads strongly on another construct and they all load highly and significantly (all t-values were significant at p<0.001, 2-tailed) on their respective constructs. All item loadings were greater than the suggested level of 0.70 [35], with the exception of a single item (In-role job performance item 4). The loadings for this item however exceeded the threshold value of 0.50 [35] and it was included in further analysis in order to maintain the content validity of the construct.

Table 2: Construct correlations (N=264)

<table>
<thead>
<tr>
<th></th>
<th>Social use</th>
<th>Generative use</th>
<th>Knowledge access</th>
<th>Innovative perf</th>
<th>In-Role perf</th>
<th>In-Role job perf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social use</td>
<td>.834</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generative use</td>
<td>.540</td>
<td>.839</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge access</td>
<td>.380</td>
<td>.394</td>
<td>.780</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovative perf</td>
<td>.100</td>
<td>.104</td>
<td>.264</td>
<td>.838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-Role perf</td>
<td>.143</td>
<td>.148</td>
<td>.376</td>
<td>.099</td>
<td>.826</td>
<td></td>
</tr>
</tbody>
</table>

The diagonal is the square root of AVE

To further assess convergent and discriminant validity, Average Variance Extracted (AVE) analysis
was conducted (table 2). The square root of AVE of each construct was greater than the correlation of that construct with other constructs and exceeded 0.50 further indicating satisfactory convergent and discriminant validity of all constructs [28].

5.2 Structural model

The model is a second order factor (Knowledge Access) model with reflective measures for six first-order factors. All first-order constructs have been modeled as reflective and their measurement items were all highly correlated among themselves supporting the fact that they are a representation of their specific construct [5]. Correlation tests for the items of each of the six first order latent variables have shown significant results (all at p<0.01). Similarly, Information Access and Expertise Location are highly correlated, confirming the conceptualization of Knowledge Access, as a reflective second order latent variable [14]. The model tests revealed a chi-square of 539 (df=343, p<0.0001) and goodness-of-fit indices above the recommended levels with the comparative fit index (CFI)=0.957, Tucker-Lewis coefficient (TLI)= 0.952, and root mean square error of approximation (RMSEA)=0.047 indicating a good fit between the model and the data [13]. All paths in the model were significant with coefficients varying between 0.24 and 0.38 (Figure 1 and Table 3), providing support for all four hypotheses. The R-squares for knowledge access, in-role job performance and innovative job performance are 0.20, 0.14 and 0.07 respectively.

5.3 Control variables

Several control variables have been collected for this study to rule out rival hypothesis and possibly help in the interpretation of the results. Respondents’ education, professional tenure (number of years of work experience), organizational tenure and number of years in their current position, in addition to age, gender, title and country of residence were not significantly associated with any of the model variables.

Table 3: Path coefficients and hypotheses testing

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Path from</th>
<th>Path to</th>
<th>Coefficient</th>
<th>Sig. Level</th>
<th>Supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 Social Use</td>
<td>Knowledge Access</td>
<td>In-role job performance</td>
<td>0.24</td>
<td><0.01</td>
<td>Yes</td>
</tr>
<tr>
<td>H2 Generative Use</td>
<td>Knowledge Access</td>
<td>Innovative job performance</td>
<td>0.27</td>
<td><0.001</td>
<td>Yes</td>
</tr>
<tr>
<td>H3 Knowledge Access</td>
<td>Knowledge Access</td>
<td>In-role job performance</td>
<td>0.38</td>
<td><0.001</td>
<td>Yes</td>
</tr>
<tr>
<td>H4 Knowledge Access</td>
<td>Innovative job performance</td>
<td>Knowledge Access</td>
<td>0.26</td>
<td><0.001</td>
<td>Yes</td>
</tr>
</tbody>
</table>

6. Discussion

This study has examined the impact of organizational social computing on knowledge workers’ job performance, one of the most central and fundamental constructs of organizational behavior and an important determinant of firm performance [74,75]. We studied the impact of social computing use on knowledge access and the subsequent effect on individual job performance. What this study has demonstrated is that using social computing has the ability to enhance an employee’s access to knowledge, subsequently supporting his/her innovative and in-role job performance.

Indeed both social use and generative use have been shown to have a positive effect on access to knowledge (H1 and H2), and accessing knowledge has a significant effect on in-role job performance (H3). This is particularly important in the context of knowledge work which depends heavily on employees having access to information in order to execute their assigned tasks [22]. Knowledge access has also been found to be positively associated with innovative job performance, albeit at a lower magnitude (H4).

Our findings support this study’s objective which is to provide some measure of the impact of knowledge supporting technology on employees’ job performance. Furthermore, social computing tools suffer from limited understanding of their business value, and our study demonstrated the impact of these tools on knowledge access and subsequently on employees’ job performance.

One limitation of the study is its sample frame, consisting of employees of a single company. However, this organization is one of the very few to experiment with a wide array of organizational social computing tools over the past few years. As the use of these tools is not mandated at the company, it has provided us with the necessary variance in social
computing use despite that the respondents were self-selected. A second limitation of the survey is the potential risk of social desirability bias inherent in self-reporting questions particularly about in-role job performance. However, the guarantee that all responses would remain anonymous and the fact that individual responses could not be attributed to employees is expected to have alleviated some of the risk of bias [67]. Moreover, self-reported measures of performance which could suffer from social desirability bias have proven to be as reliable as supervisor evaluations [75]. Finally, the outcome variables of this study, innovative job performance and in-role job performance, have an r-square of 0.07 and 0.14 respectively. Naturally employee performance is a very broad concept, affected by many factors that could not have been controlled for (e.g. an employee’s cognitive ability, social skills, job-related attitudes and career history [24,38]). Despite the breadth and richness of the performance measure, this study was able to significantly attribute some of the variability to technology usage, an important contribution to research and practice.

Despite the limited theoretical component of this study, overall it makes several contributions to research and practice. First we deal with an important dependent variable that thus far received too little attention in the IS literature, namely – knowledge workers’ job performance. Second we offer an approach to measure and quantify the benefits of knowledge management at the individual level, linking improved knowledge access with enhanced job performance. Our focus on both in-role and innovative job performance is also important as it demonstrates the importance of knowledge management from an operational point of view as well as for innovation. Finally, we contribute to the understanding of the business value of organizational social computing. Social computing has many potential benefits as well as limitations (for example in the form of distracting employees) and organizations are only beginning to experiment with these tools. In this study we demonstrate that using social computing, even to simply socialize with colleagues, may enhance an employee’s access to knowledge, ultimately enhancing their job performance.

Future research may explore further links from social computing use to job performance, or engage in a longitudinal field survey to better understand the causality in the relationship between this study’s independent and dependent variables.

8. References

