A model for understanding the relationships between organizational trust, KM initiatives and successes

Vincent M. Ribiere
Graduate School – Bangkok University
vince@vincentribiere.com

Abstract

Organizational culture and more particularly organizational trust is often mentioned as one of the main enablers for knowledge sharing and knowledge acquisition. For this research we used an empirical approach to validate this assumption. A theoretical model was developed to test the influence of organizational trust on the usage of various KM tools and practices (personalization and codification) as well as to assess its impact on KM initiative success and on the resulting benefits for organizations. Data collected among 97 US companies were used to validate this model and to demonstrate the significant role of trust in KM initiative success.

1. Introduction

KM has been a hot topic for more than a decade and a lot of organizations worldwide are still struggling to successfully implement it and to significantly benefit from it. We went through different waves and tools of KM but what remains at the center of managing knowledge is people. If people are not willing to share and acquire knowledge even the best IT tool will be inefficient. The critical role of organizational culture has been identified since the early stage of KM as well as one of its critical components, Trust.

“Trust is the one essential lubricant to any and all social activities. Allowing people to work and live together without generating a constant, wasteful flurry of conflict and negotiations” [1]

Trust getting more and more interests in organizations and the literature on the topic is also growing rapidly [2, 3]. Unfortunately very few studies have attempted to measure the effect of Trust on KM initiatives [4]. This research will try to fill this gap.

2. Research question and definition of main research variables

This study attempts to better understand how organizational trust affects the choice and use of KM tools and technology and the resulting success of the organization’s KM initiative, or lack thereof. Our main research question is as follows:

Does the level of organizational trust influence the success of a KM initiative?

In order to study this research question, the level of organizational trust is assessed through a questionnaire distributed to knowledge workers from different organizations involved in KM. Second, the types of KM tools and technology implemented and used in these organizations were evaluated. Finally, the level of success achieved was assessed. The next sections define these aforementioned variables.

2.1 Organizational trust

Considerable research has been conducted concerning the concept of trust, both interpersonal trust and organizational trust. As with the concept of organizational culture, organizational trust has been defined somewhat differently in the literature by numerous authors [5-10]. The definitions of trust are numerous and sometimes confusing mainly due to each discipline viewing trust from its own perspective. Two definitions of trust were selected:

“Trust consists of a willingness to increase your vulnerability to another person whose behavior you cannot control, in a situation in which your potential benefit is much less than your potential loss if the other person abuses your vulnerability” [11].

“Belief that those on whom we depend will meet our expectations of them” [12].
Trust is often categorized in two forms [13-15], cognition-based and affective-based trust. The cognition-based dimension of trust is associated with beliefs about competence, integrity, responsibility, credibility, reliability, and dependability. It is mainly task-oriented. The affective-based dimension of trust is based on beliefs about reciprocated care and concern, benevolence, altruism, commitment, and mutual respect. It is relationship-oriented. In organizational settings, the cognition-based form of trust is more central since it impacts more particularly reliability and dependability [16]. This dimension of trust will be assessed and used for this study.

In addition to the many definitions of trust, many tools have also been created to assess its level in an organization. Five trust factors defined by De Furia [17, 18] were determined to be most relevant to our research: (1) sharing relevant information; (2) reducing controls; (3) allowing mutual influences; (4) Clarifying mutual expectations; and, (5) Meeting expectations. These factors are described in more detail in the following section of this chapter. Very often people think that an organizational culture with a high level of sociability also implies a high level of trust. This is not always true. Consider the example of a parent-child relationship: you love your children but it does not imply that you trust them (e.g., you will not leave them by themselves). The opposite is also true: you might trust someone but might not necessarily like this person (e.g., an airplane pilot). One also needs to remember that trustworthiness takes a long time to build, and yet trust can be destroyed in an instant. These different examples show the complexity and fragility associated with trust. Trust is part of the social capital of an organization, even though in some particular cases its effect on knowledge sharing might be limited [19].

2.2 Knowledge management strategies and their associated tools and technologies

Numerous publications present knowledge management practice/tool/technology frameworks. Among them, the knowledge management spectrum, presented by Binney [20], offers a good overview of different KM tools and practices that are offered to organizations to better manage their knowledge. The tools and practices are organized in six categories: transactional, analytical, asset management, process, developmental, and innovation and creation. Nevertheless, most of them are IT oriented, since IT is the main enabler for KM. Nevertheless, other KM practices that are not driven by IT must also be taken in consideration in order to fully understand the KM strategy of an organization.

Two main KM strategies or approaches emerged: **codification versus personalization.** [21] describe how different companies focus on different practices and strategies in order to manage their knowledge. Additional reasons for this particular categorization of KMS approaches are offered by Jennex and Olfman (2003). Dennis and Vessey [22] also used these two strategies as the bedrock for their three knowledge management systems: knowledge hierarchies (where knowledge is viewed as a formal organizational resource), knowledge markets (where knowledge is treated as an individual resource), and knowledge community (where knowledge is viewed as a communal resource).

The codification approach

The first strategy identified by Hansen, et al. (1999) is called “codification”, which relies heavily on IT. One of the benefits of the codification approach is the **reuse of knowledge.** “Knowledge is codified and stored in databases, where it can be accessed and used easily by anyone in the company. Knowledge is codified using a **people-to-documents** approach: it is extracted from the person who developed it, made independent of that person, and reused for various purposes” [21]. It has been named and described differently by other authors: **The cognitive network model** [23]; **The collecting dimension** [24]; **The product view approach** [25]; **The transformation model** [26]; **Distributive applications** [27]; and, **The document-centered approach** and **The technological approach** [28]. After a close analysis of these different portrayals, one can conclude that all of these descriptions and definitions are very similar and depict the same type of practices and tools [29].

The personalization approach

The personalization approach (Hansen, et al., 1999) focuses on developing networks for linking people so that tacit knowledge can be shared. It invests moderately in IT. This approach focuses on dialogue between individuals, not knowledge in a database. “Knowledge that has not been codified--and probably couldn’t be--is transferred in brainstorming sessions and one-on-one conversations” [21]. An investment is made in building networks of people, where knowledge is shared not only face-to-face but also over the telephone, by email, and via videoconference. All the previously cited authors who defined the codification approach also came up with their own definition for this approach: **The community networking model** [23]; **The connecting
The process-centered approach [25]; The independent model [26]; The collaborative approach [27]; and, Socio-organizational knowledge management [28].

2.3 KM initiative success

It is always difficult and open to controversy to define and measure “success”. Different metrics (qualitative and quantitative) can be used to measure success. For example, Jennex and Olfman [30] offer a success model based upon the Delone and McLean [31] IS Success Model and discussed four different models of KM success: (1) The Knowledge Value Chain [32]; (2) the KM Success Model [33]; (3) the KM Effectiveness Model [34]; and, (4) the KMS Success Model [35]. Four main indicators defined and used by Davenport et al. in their publication concerning “successful knowledge management projects” were adopted [36]:

1. Growth in the volume of knowledge available since the KM initiative has been launched (e.g., number of documents available)
2. Growth in the usage of knowledge available since the KM initiative has been launched (accesses to repositories, or the number of participants for discussion-oriented projects)
3. The likelihood that the project would survive without the support of a particular individual or two, that is, the project is an organizational initiative, not an individual project
4. Growth in the resources (e.g., people, money) attached to KM initiatives.

Success was measured based on two dimensions. Since the main purpose of a KMS is to facilitate the flow and dissemination of knowledge, an important dimension for success is the fact that different employees use the system. Success factors #1 and #2 were used to measure this dimension of success. The second dimension of success used is based on the “robustness” of the KM initiative. If KM is given the resources and if there is a clear commitment from senior management to make it happen, then robustness is a success factor. Success factors #3 and #4 were used to measure this second dimension of success.

We believed that it would also be relevant to check if the expected benefits of the KM initiative were achieved and, if “yes”, to what degree. To do so, we used a questionnaire developed by KPMG [37]. Fifteen main benefits often expected after KM implementation were used (KPMG, 2000).

<table>
<thead>
<tr>
<th>Table 1: Fifteen common KM benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better decision making</td>
</tr>
<tr>
<td>Better customer handling</td>
</tr>
<tr>
<td>Faster response to key business issues</td>
</tr>
<tr>
<td>Improved employee skills</td>
</tr>
<tr>
<td>Improved productivity</td>
</tr>
<tr>
<td>Increased profits</td>
</tr>
<tr>
<td>Increased innovation</td>
</tr>
<tr>
<td>Increased share price</td>
</tr>
</tbody>
</table>

Additional success factors could have been used such as the 12 KMS success factors presented by Jennex and Olfman [30] but it was easier to work with a smaller number of core variables. The average of all the success factors was used to obtain the success level score.

3. Research hypotheses and proposed conceptual model

3.1 Research hypothesis #1

As previously presented, organizational trust seems to be an important cultural factor influencing interaction and knowledge sharing between individuals. Nelson and Cooprider [38] demonstrated a significant relationship between mutual trust and shared knowledge between IS groups and their line customers. Politis [39] also used a quantitative approach to demonstrate the relationship between trust and knowledge acquisition. His findings support that most interpersonal trust dimensions are positively related to the variable of knowledge acquisition. Despite these two researches very few studies have been conducted to demonstrate the direct relationship of trust on knowledge sharing. A lot of research focus on demonstrating the relationship between variables like; personal motivation, social capital, communication, … and knowledge sharing particularly on topics focusing on virtual teams and communities of practice [40]. All these studies reinforce the importance of trust in individual interactions (face to face or assisted by technology). KM personalization approaches are based on practices and tools that support direct relations between individuals. If the level of trust in between employees is high we can expect more direct communication and more knowledge sharing. Our first hypothesis is based on this assumption:
H1: The level of organizational trust positively influences the level of usage of KM personalization tools and practices.

3.2 Research hypothesis #2

What is the relationship between organizational trust and the usage of codification tools? We are now focusing on a human-technology relationship. The knowledge used has been codified and is available in an information system. The question becomes, does someone who doesn’t trust his/her colleagues will still use the knowledge they codified in the system or not? In fact this problem has 2 facets; trust in the system and trust in its content. We can think that if people don’t trust the system they are not going to use it, so they will not be able to get and use the knowledge available in it. This type of research concerns the field of the adoption of technologies and among the most used model we can mention the TAM model originally developed by Davis [41]. The trust variable was originally not part of the TAM model but the numerous evolutions of the model as well as its customization to e-commerce applications made the trust variable appear as important additional component of the model [10, 42, 43]. Now if we assume that a person does trust the system but doesn’t trust people who populated its content with knowledge artifact, what can happen?

- I don’t trust this person so I am not going to contact him/her directly to get their knowledge but I have no problem accessing knowledge they shared in the system. The key is to acquire knowledge no matter how it was obtained.
- I don’t trust this person and I will not even trust what this person shared on the system.

These two scenarios reflect the two types of trust previously described (cognitive and affective [13]). In the first scenario there is no affective trust between the 2 individuals but some cognitive trust. In the second scenario both types of trust are lost and knowledge acquisition will not occur. Based on the following discussion we postulated the following hypothesis:

H2: The level of organizational trust positively influences the level of usage of KM codification tools and practices.

We think that the level of organizational trust does influence the usage of KM codifications tools but we are also conscious that other dimensions present in the TAM model will also play a role in this relationship. Consequently we expect the relationship between trust and codification to be moderate (not too strong).

3.3 Research hypothesis #3

Early in the 1990s, Jack Welsh had already underlined the important role of trust: “Trust is enormously powerful in a corporation. People won't do their best unless they believe they'll be treated fairly--that there's no cronyism and everybody has a real shot. The only way I know to create that kind of trust is by laying out your values and then walking the talk. You've got to do what you say you'll do, consistently and over time” [44]. The early KM efforts conducted by Buckman laboratories have been coroneted with success and once again trust was mentioned as a critical component: "It is important to create a climate of continuity and trust so that we may have proactive knowledge sharing across time and space. Organizational culture must change from a state of hoarding knowledge to gain power to one of sharing knowledge to gain power" (as quoted in Davenport and Prusak, 1998). When the level or organizational trust is high people are more open to interact, to collaborate, to innovate, to take risks, and of course to share and acquire knowledge. This leads us to postulate the following hypothesis:

H3: The level of organizational trust positively influences the success level of a KM initiative.

3.4 Hypothesis #4

The personalization approach is intended to facilitate the interaction and collaboration between individuals so they can share their tacit knowledge, solve problems more rapidly, make better decisions in a fastest way, grow intellectually, and be more creative. Very few studies have been conducted to assess the relationship between personalization approaches and the success of KM initiatives. Among them we can mention the research conducted by Delmonte and Aronso [45] who demonstrated a significant relationship between social interaction and knowledge management system success. The trust factor is often mentioned in this study has been critical. Another study conducted by Choi and Lee [46] establishes the effect of four KM styles and their effect on corporate performance (based on benchmarking). Their results shows that companies adopting a “Dynamic style” (highly tacit and explicit oriented) are the most successful. Results of companies that are mainly “system-oriented” (focus on explicit knowledge) or the ones which are...
“human-oriented” obtain similar scores (lower than the “dynamic” style). Based on these findings we postulated the following hypothesis:

H4: The level of usage of KM personalization tools and practices positively influences the success level of a KM initiative.

3.5 Hypothesis #5

Based on Choi and Lee’s study [46] previously described it looks like both approaches (codification ad personalization) have a positive affect on the success of a KM initiative. Not everyone agrees with this idea. McDermott [47] for instance clearly stated in a provocative paper titled “Why information technology inspired but cannot deliver knowledge management” that ITC can only carry the information that will be used for individual or group thinking which become source of knowledge. To leverage knowledge, thinking must be leveraged with appropriate information. For McDermott the solution resides in Communities of Practice (CoP) but he doesn’t deny the enabling effect of ICT in KM. We could not think about KM these days without the use of technology but as often mentioned its role needs to remain an enabler and not the center of a KM strategy. Our last research hypothesis is:

H5: The level of usage of KM codification tools and practices positively influences the success level of a KM initiative.

3.6 Research model

The five previous hypotheses were used as the foundation of the following model (Figure 1):

4. Research Methodology

4.1 Assessment of variables

A survey tool (a questionnaire) was developed in order to assess:

- The level of organizational trust
- The level of use of different KM tools and technologies deployed in each organization
- The perceived success of the KM initiative.

Assessing Organizational Trust

The tool selected, the Organizational Trust Survey (OTS), was developed and validated by De Furia [17, 18] where trustworthiness (TW) is based on five behaviors:

\[TW = SI + RC + AI + CE + ME \]

Sharing relevant information (SI) refers to the behaviors whereby one individual transmits information to another person. Reducing controls (RC) refers to the behaviors affecting the processes, procedures or activities with which one individual (1) establishes the performance criteria or rules for others, (2) monitors the performance of another person, (3) adjusts the conditions under which performance is achieved, or (4) adjusts the consequences of performance (i.e., positive or negative reinforcements). Allowing for mutual influences (AI) occurs when one person makes a decision that affects both individuals. Mutual influence means that both individuals have approximately equal numbers of occurrences of convincing the other or making the decision for both individuals. Clarifying mutual expectations (CE) refers to those behaviors wherein one person clarifies what is expected of both parties in the relationship. It involves sharing information about mutual performance expectations. Meeting expectations (ME) involves any behaviors in which one individual fulfills the behavioral expectations of another person. It is closely related to confidence, reliability and predictability. The OTS allows organizations to measure the trust-related behaviors of various categories of people within the organization—upper managers, first line supervisors, and coworkers— in relation to how employees’ trust-related expectations are being met. It also measures trust-related behaviors between organizational units and the perceived impacts of organizational policies and values on trust-related behaviors. This tool (questionnaire) is based on 50
questions (10 questions for each of the 5 factors). Because of the existence of a pretested questionnaire with a small number of variables, necessary because of the somewhat limited size of our dataset, the OTS was used.

Assessing the use of KM tools and technologies

For this section of the questionnaire an assessment tool was developed. The most common tools and technologies used for knowledge management initiatives were listed, based on a literature review. These technologies cover the six categories of the knowledge management spectrum, presented by Binney [20]. Respondents were asked to list the KM tools and technologies used at the organizational level (cf. Table 2). A sense of the degree of use or utilization ranging from “most used” to “least used” was employed to enrich this insight. (It might be argued that some of the personalization tools, e.g., corporate yellow pages, in fact are examples of codified knowledge, the critical delineator is how the tools are used in practice. For example, the crucial fact about corporate yellow pages is not that it is a knowledge repository, but that employees use it to connect to experts.)

Table 2: Codification and Personalization KM Tools and Practices

<table>
<thead>
<tr>
<th>KM Tools and Technologies</th>
<th>Codification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email & Listserv</td>
<td>Corporate Intranet – Extranet – Internet</td>
</tr>
<tr>
<td>Database Management Systems</td>
<td>Search Engines - Intelligent Agents</td>
</tr>
<tr>
<td>Data Warehouses – Data Marts</td>
<td>Web-based training – e-learning</td>
</tr>
<tr>
<td>Help-desk applications</td>
<td>DMS</td>
</tr>
<tr>
<td>Multimedia repositories</td>
<td>Data mining- Knowledge Discovery</td>
</tr>
<tr>
<td>DSS and Expert Systems</td>
<td>Knowledge Mapping</td>
</tr>
<tr>
<td>Expertise locators – Corporate Yellow pages – Who’s who</td>
<td>Communities of Practice (interests in the same topic, field)</td>
</tr>
<tr>
<td>Communities of Purpose (project, task oriented)</td>
<td>Groupware</td>
</tr>
<tr>
<td>Teleconferencing (shared applications, whiteboards)</td>
<td>Best practices repository</td>
</tr>
<tr>
<td>Videoconferencing (using audio and/or video)</td>
<td>Mentoring - Tutoring</td>
</tr>
<tr>
<td></td>
<td>Story Telling</td>
</tr>
<tr>
<td></td>
<td>Desktop computer conferencing</td>
</tr>
<tr>
<td></td>
<td>Online Chat & Instant Messaging</td>
</tr>
</tbody>
</table>

KM Initiative's Success

As mentioned earlier in this paper four main indicators were used to assess the level of success as well as 15 expected benefits. Respondents were asked to assess on a five point Likert scale to what degree they believed that the following statements corresponded to the current success status of their organizational KM initiative.

- I have noticed a significant growth in the volume of knowledge available since the KM initiative has been launched (number of documents available).
- I have noticed a significant growth in the usage of knowledge available since the KM initiative has been launched (accesses to repositories and number of participants for discussion-oriented projects).
- I believe that the project would survive without the support of a particular individual or two.
- I believe that resources (e.g., people, money) attached to KM initiatives are going to grow.

Regarding the 15 KM benefits (Table 1) expected and achieved, the respondents were asked to assess on a five point Likert scale to what degree they believed that the benefits were achieved (if expected).

4.2 Validity and reliability of the survey instrument

Due to the space limitation of this publication, we will only provide a summarized version of the results of the different tests that were conducted to verify the level of validity and reliability of our instrument [48]. In order to test the internal validity of the different dimensions assessed we performed a Cronbach alpha test (Table 3). The results demonstrate an acceptable level of internal validity. Some items were removed from the instrument due to their low level of correlation with the other items composing the construct.

Table 3: Results of Cronbach alpha test

<table>
<thead>
<tr>
<th>Construct (number of items remaining)</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational Trust (24)</td>
<td>0.94</td>
</tr>
<tr>
<td>Codification (7)</td>
<td>0.801</td>
</tr>
<tr>
<td>Personalization (7)</td>
<td>0.827</td>
</tr>
<tr>
<td>KM Success (19)</td>
<td>0.951</td>
</tr>
</tbody>
</table>
A factor analysis was conducted to test the validity of each construct. For the codification and personalization constructs, some items had to be removed due to their low loading on the factors. For the other constructs all the items were retained. Overall, we consider that the levels of validity and of reliability of the assessment tool were acceptable.

4.3 Data collection and Analysis

Data were collected through two main mechanisms. An online version of the questionnaire posted on the Web as well as a paper version were used. Most of the responses received (98%) came from the online version. The target population was Chief Knowledge Officers (CKOs), managers, and other employees involved in knowledge management initiatives at any level in an organization. A total of 1050 emails, asking for participation, were sent out to targeted people involved with KM (members of KM groups and associations). A total of 129 responses were received. This represents a response rate of 12%. A fundamental premise of the research was that targeted organizations must have had experience with KM initiatives. Of the 129 questionnaires received only 97 were complete and were representative of organizations involved in KM.

Organizations that participated were predominantly large organizations in the consulting and IT - telecommunications fields as well as agencies in the Federal Government. Respondents were mainly service-oriented offering both standardized and customized products/services and were predominantly located in the US.

5. Data Analysis

The initial conceptual model was tested against the data collected and the goodness of fit indexes came out not as good as expected. Due to the space limitation in this paper we will not show the three intermediate models but they can be found in Ribiere’s dissertation [48]. In order to improve the quality of our model the main following changes were made:

- A new variable was added to the model (control variable) representing the influence of “rewarding knowledge sharing” on the use of codification and personalization. Since some of the organizations we collected data from did reward knowledge sharing, we thought that this could be an important factor to integrate since it may affect the usage of various KM practices.
- After looking more closely at the factors representing the KM initiative success dimension we realized that some of them were not only relevant to the KM initiative success but were also benefiting the overall organization. We split the initial “KM success” factor into 2 factors; KM initiative success and Organizational benefits. Table 4 indicates which factors were retained for each dimension. The validity and reliability of these new dimensions were tested through a Cronbach alpha analysis (α=.871 KM initiative) and (α=.925 Org. benefits) and using a factor analysis where only 2 factors emerged.

<table>
<thead>
<tr>
<th>KM initiative success (9)</th>
<th>Organizational benefits (10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth in the volume of knowledge available</td>
<td>Better customer handling</td>
</tr>
<tr>
<td>Growth in the usage of knowledge available</td>
<td>Improved productivity</td>
</tr>
<tr>
<td>The likelihood that the project would survive without the support of a particular individual or two</td>
<td>Increased profits</td>
</tr>
<tr>
<td>Growth in the resources (e.g., people, money) attached to KM initiatives</td>
<td>Reduced costs</td>
</tr>
<tr>
<td>Better decision making</td>
<td>New ways of working</td>
</tr>
<tr>
<td>Faster response to key business issues</td>
<td>Increased market share</td>
</tr>
<tr>
<td>Improved employee skills</td>
<td>Create additional business opportunities</td>
</tr>
<tr>
<td>Increased innovation</td>
<td>Improved new product development</td>
</tr>
<tr>
<td>Sharing of best practices</td>
<td>Staff attraction / retention</td>
</tr>
<tr>
<td></td>
<td>Increased share price</td>
</tr>
</tbody>
</table>

A path analysis using structural equation modeling techniques was performed to test our various models. The tests were performed using the “CALIS” procedure of the statistical software SAS. This procedure uses parameter estimation based on maximum likelihood. The path diagram is presented on Figure 2. The goodness of fit indexes are presented on Table 5. The value of the Chi square listed on this table represents the null hypothesis test that the covariance matrix generated based on the data collected has the same structure as our theoretical model, meaning that the model fits our data. Other indicators of fit are presented on the same table. The final model presented can be considered as acceptable.
Table 5: Goodness of fit indexes for final model

<table>
<thead>
<tr>
<th>Goodness-of-Fit Index</th>
<th>Values</th>
<th>For a “good” model the value should be:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi2</td>
<td>11.70</td>
<td>The smallest as possible</td>
</tr>
<tr>
<td>Degrees of freedom</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Prob>Chi2</td>
<td>0.07</td>
<td>As high as possible > .05</td>
</tr>
<tr>
<td>Comparative Fit Index (CFI)</td>
<td>Bentler</td>
<td>Greater than 0.90</td>
</tr>
<tr>
<td>McDonald's Measure of Centrality</td>
<td>0.96</td>
<td>Greater than 0.90</td>
</tr>
<tr>
<td>Non-Normed Fit Index (NNFI)</td>
<td>Bentler & Bonett</td>
<td>Greater than 0.90</td>
</tr>
<tr>
<td>Normed Fit Index (NFI)</td>
<td>Bentler & Bonett</td>
<td>Greater than 0.90</td>
</tr>
</tbody>
</table>

5. Main findings

Most of the coefficients on the model are highly significant. Among the most significant coefficient we can mention the one between the “success of the KM approach” and the “organizational benefits” (0.72). This finding demonstrates the positive impact that a KM initiative can have on an organization. The level of organization trust impacts almost equally the use of personalization and codification approaches. As explained in the definition of the research hypotheses we originally expected the influence of trust to be higher on personalization than on codification but it seems that organizational trust is a good predictor of usage for both KM approaches.

The recent emphasis on Web 2.0 (social networking) tools seems to validate this finding.

The usage level of personalization had a statistically significant impact (0.18) on the organizational benefits of a company. This relationship was not significant between the codification and the organizational benefits variable. Having employees to interact, collaborate and share seems to provide more benefits to a company that people simply using IT system to codify and acquire knowledge. A
balanced approach (codification and personalization) is often recommended.

6. Conclusion

Very few quantitative studies had been conducted to demonstrate the influence of organizational trust on the usage level of various KM approaches as well as on the success of a KM initiative and on the emerging benefits for organizations. This initial study is a first attempt to do so. The theoretical model presented seems to have an acceptable fit with the data collected but will greatly benefit from further validations with larger data sets. Not all organizations have realized the beneficial influence that trust could bring to their environment and the impact it could have on facilitating knowledge sharing and knowledge acquisition. A culture and/or leadership change will often be required for organizations to increase their level of trust. Williams [49] provides some guidelines on how to build or repair trust.

References

2. Kramer, R.M., Organizational Trust: A Reader 2007: Oxford University Press, USA

