Using Demographic Migration Theory to Explore Why People Switch Between Online Games

Avus C.Y. Hou
Department of Information Management
National Taiwan University
d93725009@ntu.edu.tw

Ching-Chin Chern
Department of Information Management
National Taiwan University
cchern@im.ntu.edu.tw

Houn-Gee Chen
Department of Information Management
National Taiwan University
hgchen@ntu.edu.tw

Yu-Chen Chen
Department of Business Administration
Soochow University
cyc@scu.edu.tw

Abstract

Online gaming has become a popular leisure-time activity in recent years. In this study, we adopted the Push-Pull-Mooring Model, which analyzes human migration behavior based on the Demographic Migration Theory, to explain why players switch from an existing game to a new one. An empirical survey was conducted to collect data from 574 online gamers and then this data was analyzed using the Structural Equation Modeling (SEM). The results indicated that the Push-Pull-Mooring Model can be extended to explain the switching intentions of online game players. It appears that the “Mooring effects” have a stronger influence on players’ switching intentions than “Pull effects”, while “Push effects” have no influence. Finally, this article discusses the implications of our findings and offer possible avenues for management at online game providers to understand their customers better.

Keywords: Switching Intention; Online Gaming; Push-Pull-Mooring Model

1. Introduction

As more families gain access to broadband, online gaming is becoming a mainstream leisure activity on the Internet. The online game market has grown rapidly in recent years. In US, for example, the value of the market has escalated to $4 billion dollars in 2008. Similarly, in Asia-Pacific, the market value is estimated to US$1,840 million in 2008, compared to US$760 million in 2003 [29].

Online game providers generate revenue from two sources: subscription-fee and sale the powerful virtual items to players. These two sources are not related to selling the software license directly to the players, so the problem of software piracy does not arise. This special feature of online game business guarantees the profits of the game providers. Therefore, numerous companies enter into the market to share the pie, which escalates competition [5]. Due to high involvement of online gaming, players need to expend a great deal of efforts training themselves for achieving higher game skill, and then they can enjoy the games afterward [1]. Hence, players are usually absorbed in one game for a certain period of time. After the period, most players will switch between games at some state because they have tendencies of pursuing fresh entertainments. Hence, to attract players to switch to a new game or to retain players to stay in the current game are both important issues for online game providers. However, studies related to these two issues are still insufficient [3]. A comprehensive work is thus needed to understand more about this topic.

The online game creates a virtual world to allow gamers to perform virtual roles of their choices with develop online carrier with other players who share common interests. Therefore, gamers are like residents in a virtual world when they are in game playing. When players switch between games, they analogically switch between different virtual worlds and thus the switching behavior can be treated as migration among virtual worlds. Therefore, it is appropriate that we can analyze switching between online games with human migration model which scholars frequently used to explain migration in real life.

Researchers in the marketing field explain consumers’ switching behaviors by using the Push-Pull-Mooring (PPM) model as a theoretical framework [9]. We also adopted the PPM model to explore online game players’ switching intentions. Empirical data were collected from 574 online gamers and were assessed and analyzed by Structure Equation Modeling (SEM) through LISREL. The contribution of this paper has two folds. First, we have shown that the PPM model, which is used to analyze the population migration behavior in the real world, can also be applied to explain the gamer migration behavior in the virtual world but with modification. Second, this study provides a comprehensive model to explain the reasons why gamers stay in the current game or switch to a new
online game. These findings offer useful insight for online game providers to understand their customers better, and thereby develop more effective business strategies.

The remainder of this paper is organized as follows. Section 2 explains the background of the Push-Pull-Mooring migration model. In Section 3, we present our hypotheses and explain the rationale behind them. In Section 4, we discuss the methods used to analyze the data. The results of hypothesis testing and Structure Equation Modeling (SEM) through LISREL are detailed in Section 5. Finally, in Section 6, we summarize our findings and consider their theoretical and managerial implications.

2. Theoretical Background

In this research, we consider the switching intentions of online gamers as a type of migratory behavior in virtual worlds. People migration is a longitudinal topic in demography, and people’s movements to new destinations are considered as switching behavior of living locations [16]. The Push-Pull-Mooring Model (PPM Model), which is the guideline for migration study, considers the factors that push people to leave one place (their original home) and the factors that pull them to migrate to a new location [41]. In addition, the model contains a number of variables that can either hold latent migrants in their place of origin or facilitate migration to the new destination [44]. In this section, we introduce the concepts of the PPM model and explain how we apply it to the phenomenon of online game switching.

2.1 Migration

Demographers defined migration as “the movement of a person (a migrant) between two places for a certain period of time” [11]. According to time period, migration can be divided into temporary and permanent migration. The temporary means people have left origin and work in other places during the decades, while retire or elder then return to origin. Permanent migrations are people who leave their place of origin forever [30]. As a result, business trip and holidays would not be included in migration [32].

Researchers also classified the attributes of migrants: Voluntarily migrants and involuntary migrants (refugees) [30]. Voluntarily migrants are who can freely choose their destination and migration process. Alternatively, refugees have no choice and must to migrate due to natural disasters or wars, no matter he/she like to migration or not [11]. Similarly, in the discipline of marketing, consumer switching behavior can be also divided into voluntarily and involuntary switching. Voluntarily switching occurs because of core service failure, staffs response to service failure, or pricing issues [35]. Involuntary switching arises because the customer moved or his/her provider closes.

2.2 Push-Pull-Mooring Model of Migration

The statement of people migration is influenced by push-pull effects that can retrace to 1885 by Rubenstein’s publication 'Law of Migration' [41]. To date, push-pull model has become the main theory for interpreting the migration of people [30]. It regards migration as the consequence of interaction between Push effects of the place of origin and pull effects of the destination.

Push effects are the negative factors that impel people to leave their place of origin; for example, a lack of working opportunities, a decline in natural resources or the prices paid for them, and natural disasters. Pull effects are the positive factors of the destination that attract people to it; such as, better development and working opportunities, higher income, and comfortable climate [41].

The push-pull model can be used to analyze most types of migration behavior; however, it does not account fully for the migration of individuals. For example, if certain push factors and pull factors operate in the place of origin and the destination respectively, why do not all households move and how can return migration be properly explained [44]?

In such situation, migration is not caused not only by Push-Pull effects but also by personal factors. It is probably the reason that Walmsly [53] questions the assumptions about the relationship between economic conditions and migration. He claims that migration is related more to reasons of a personal kind, such as a better life style.

A numbers of scholars have recognized that normative and psychosocial variables were important in migration decision. Lee [41] introduced the construct of “intervening obstacles” and “personal factors” into the discussion of push-pull forces. Furthermore, Longino [42] identified ‘mooring’ as representing the relationship group factors that are most important in forming a decision to migrate or not to migrate. Mooring may be seen as both cultural and spatial factors through which a person or household gains access to psychological wellbeing.

Moon [44] added the concept of ‘mooring’ into Push-Pull model as Push-Pull-Mooring Model (PPM) for explain population's migration. PPM model reminds researchers that the personal factors and cultural signals are important to movement.

Bansal et al., [9] argued that customers switching among service providers are alike to consumers migrant among service providers. They found PPM model provided a unifying framework for position the factors which found in service switching literatures, and advised the researchers to apply PPM
3. Hypothesis

This research aims at understanding players’ switching intention (SI). Figure 1 presents the research model. The factors impel players to leave away the online game (Push effects): low enjoyment (EN), dissatisfaction of the online game provider (SA), and perceived insufficient participant (CP). Factors attract players toward to the new online game: alternative attractiveness (ATS). Factors to bind gamers leave away (mooring effects): switching costs (SC), social relationship (SR), and prior experience (PE). This scission will discuss why we choice these concepts and their position in PPM online game switching model.

![Figure 1. The research model](image)

3.1. Push Effects

According to migration literature, people are likely to move due to negative factors of their original place [41]. For instance, lack opportunities of career development: lack of work, no chance to marry, lack natural resources or unable to buy, and disasters may germinate the thought of migrating [41]. Because there is lack of works for understand why players leave online games, we borrowed ideas from literature that why people join a game and several possible factors from online service research.

Players participate online gaming voluntarily to feel optimal experience and perceive enjoyment [15; 26]. When players enter in the flow state, they become absorbed in a game and feel in control [26]. There exists an incremental mechanism in the flow experience [18]. Peoples will re-enter to an activity for experience flow again and again [24]. This mechanism is important because players expect to experience flow by re-enters the online gaming; more times they entry, the stronger sense of enjoyment they fell. Therefore, player will continuous to be the resident in the virtual world, she/he will not leave away the online game. Oppositely, players emerge switching to other games from perceive low enjoyment in current online games.

Except for enjoyment, satisfaction of online game provider is another vital factor to keep gamer stay. Satisfaction is frequently used for weight and keeps customers either offline or online service contexts [17; 36]. Though customer satisfaction and customer loyalty is not always positive, but dissatisfy customers will aggressively seek for alternativeness to switch [25; 35]. Online game industry is kinds of the online services. They offer online entertainment technology for people use in leisure time [26]. Players vary in game experience and computer skills, therefore, 24 hours call services are needed to answer questions and solve problems such as inaccessibility to the server, account theft, and stolen game items. If the players perceive low satisfaction of online game provider, he/she may emerge the intention to change a game.

Information products often have the characteristic of network externality. That is, the value of a technology to a user increases with the number of adopters [50]. An online game can be classified as a type of information products and thus it inherits the characteristic of network externality. The more players play the same online game and interact with each other, the greater playfulness of the game they sense [26; 6]. Previous studies have shown that the number of participants in an online game positively influences the entertainment value perceived by the players [4]. That is, the more gamers participate in an online game, the much more playfulness they perceived. Conversely, when players feel there are insufficient participants in an online game, they may consider leaving. According to the above discussions, we hypothesize that:

$H1$: The lower the perceived enjoyment, satisfaction with the online game provider, and perceived insufficient participants in an online game,
the greater the likelihood players will switch to another online game.

3.2. Pull Effects

According to the migration theory, people are likely to move if destination offers a better quality of life than their original home, such as the better work opportunities, higher income, and good schools [41]. Similarly, in service researches, customers are likely to switch when providers can offer a better service quality than current one, even though the price is higher [9; 17; 35]. Online gaming is seen as a technology to offer people online entertainment services [26]. Study reported that players switching to a new game when attractiveness is fresh for whom to perceive [3]. Hence, we hypothesized that:

H2: The higher the attractiveness of another online game, the greater the likelihood that customers will consider switching to it.

3.3 Mooring Effects

Because the complexity of migration decisions, it is not sufficient to consider push and pull factors merely independently. Intervening obstacles or mooring effects were suggested to be considered in migration [41; 44]. Mooring effects are described as both cultural and spatial factors through which a personal gains access to psychological well-being. Mooring factors are influenced by cultural signals that are perceived as being important, motivating the people to stay or migrate to a destination.

The economic condition is a vital factor within mooring effects. People are likely not to migrate when the cost is high. In marketing studies, switching costs are mostly to present as the costs to expense in switching. Switching costs refer to the costs of switching from one product to another competing product [49]. The higher the switching costs, the more difficult it is to switch brands or products even though with low adoption costs [13; 21; 37; 38]. While player switches the game, he/she will face lose of accumulation of current game. Such as, game experience level, game items can not apply in another game; hence, players are likely not to switch due to high switching costs.

The presence of family or friends at a location will motivate the person to stay put or migrate to a new location [30]. Online game is a game added to the Internet system, which allows many players to interact in virtual space; furthermore, gamers can organize virtual teams that make players to gather together for achieve goals (i.e., defeating monsters and finding treasures), and can offer a place for players to interact with each other [14]. Therefore, social interaction need is important factor for participate the online gaming. Once individual recognize that he/she belongs to specific team, he/she will likes to continue playing the game and it will not be easy to leave.

Prior experience is important factor to migration too. Individual with migration experience is possible to migration again compare to a person who without experience of migration [40]. In case of people have been moved away the place that he/she grew up, the experience makes he/she easier to migrate. Because of overcoming the first time migration situation and got success, migrants have learned skills for future migration, and are more likely to migration again [40]. This is consistent with marketing study finding that buyers’ prior switching experience influences their subsequent behavior intentions [22]. Hence, Players are more likely to switch when they have prior switching experience. The above statements lead to our last hypothesis:

H3: The likelihood that players will intend to switch online game is lower when their switching costs are higher, their social relationships are strong, or they have not switch often in the past.

4. Research Method

4.1. Measurement

In the measurement design, all questionnaire items are adopted from existing literatures and the items are showed in appendix A with 8 constructs including 28 questionnaire. Items are slightly modified to suit for the context of online game switching.

In the push effects, the scale items for enjoyment (EN) were assessed with Ghani and Deshpande’s [23] enjoyment scale. Satisfaction of online service providers (SA) was measured with five items from Oliver and Swan’s [47] scale. Critical participant was measured with three item scale proposed by Hsu and Lu [26]. The pull effect was operationalized as alternative attractiveness (ATS), which was measured with Bansal et al. [9] scale. The mooring effects included switching costs, social relationship, and prior experience. Switching costs (SC) were assessed with Ping’s [48] scale. Social relationship (SR) was measured with four items used by Hsu and Lu [27]. Prior experience (PE) was base on Bansal and Taylor [8]. Switching intention (SI) was measured by work of Oliver and Swan. Except two parts were used for collecting the gamer experience and human demographic, all items were measured on the 7-point Likert scales or 7-points differential semantic scales.

4.2. Data Collection

The questionnaire was first discussed with two professors for verify the context validity. After that, a pretest was conducted to test the measurement before
large survey. Pretest samples were faculties, staffs, and undergraduate students in a private university of technology. They were all having experience of game-playing. The purpose was to access the length of the measurement and wording of the items. In total, 95 samples were got and the pre-reliability test was constructed by SPSS 13. All constructs’ Cronbach's alpha value are greater than 0.8, shown the instrument with high reliability initially [45].

Empirical data were collected from a field survey. Samples were self-selected by placing messages on two large game-related websites in Taiwan, including Bahamut, (http://www.gamer.com.tw) and Gamebase (http://www.gmaebase.com.tw). Messages were announced for seeking volunteer who has online game experience to be the respondents, especially in kind of MMORG. The message stated the purpose of this study, provided a hyperlink to the questionnaire. As an incentive, cash coupon with value of US$2 dollars was offered to each respondent through mail.

5. Results

The survey yielded 635 responses. After removing those with unanswered items, we had 574 usable respondents. Approximately 76 percent of the respondents were male. The majority of respondents were 19 years old or less (50%), and 43% were between 20 and 29 years old. Approximately 86 percent of the respondents were students whose expenditure on subscription fee was equal or less than US$10 dollars or less per month.

5.1. Measurement model

SPSS 13 were used for verity the reliability of the measurement. As shown in Table1, all scales were adequate given by Nunnally’s suggestions [45]. For critical participant (CP), Cronbach’s alpha value was 0.642, showing medium reliability of items which use to measure this concept. For all the other concepts, Cronbach's α value was exceeding than 0.8. These results indicated high reliability of measurement.

<table>
<thead>
<tr>
<th>Concepts</th>
<th>Items</th>
<th>Scale Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching Intention (SI)</td>
<td>3</td>
<td>0.946</td>
</tr>
<tr>
<td>Enjoyment (EN)</td>
<td>4</td>
<td>0.909</td>
</tr>
<tr>
<td>Satisfaction (SA)</td>
<td>5</td>
<td>0.950</td>
</tr>
<tr>
<td>Critical Participant (CP)</td>
<td>3</td>
<td>0.634</td>
</tr>
<tr>
<td>Switching Costs (SC)</td>
<td>4</td>
<td>0.859</td>
</tr>
<tr>
<td>Social Relationship (SR)</td>
<td>4</td>
<td>0.929</td>
</tr>
<tr>
<td>Prior Experience (PE)</td>
<td>2</td>
<td>0.892</td>
</tr>
<tr>
<td>Attractiveness (ATS)</td>
<td>3</td>
<td>0.808</td>
</tr>
</tbody>
</table>

The confirmatory factor analysis (CFA) was performed by using LISREL 8.54 with maximum-likelihood estimation (ML) to test the construct validity of questionnaire for switching [34]. To access the model, multiple fit indexes were reported. However, since chi-square may be inappropriate index to assess the fit of models with large sample sizes [43], five additional fit indices are also reported: chi-square/degree of freedom ($\chi^2/df=2.17, \chi^2=911.56 \text{ df}=420$) [34], goodness-of-fit index (GFI=0.90) [34], Normed fit index (NFI =0.96), comparative fit index (CFI, CFI=0.98) [10], root mean square error of approximation (RMSEA=0.042) [51]. Overall model fit indexes were better than recommendations then indicated the CFA model was consistent with the data. More, to access the discriminate validity by using average variance value (AVE), one item (CR1=0.3) belong to critical participant was removed due to it makes AVE of critical participant less then 0.5. The correlation matrix to present construct validity was showed in Table 2.

5.2. Hypothesis test

The structural model was tested by LISREL 8.54 with maximum-likelihood estimation [34]. A two-step process was followed to assess the PPM model. First, a second-order factor model was analyzed, with enjoyment, satisfaction, and critical participant reflective of the second-order factor labeled push effects, and switching costs, social relationship, and prior experience reflective of a second-order factor labeled mooring effects. The pull effects construct was captured by the alternative attractiveness concept alone. Second, the factor scores of first-order variables, including EN, SA, CP, SC, SR, PE, and ATS were used to assess the structural model up to intention. To assess the results of SEM analysis, constructs were all within acceptable range shown the good fitness between our model and sample, except chi-square/degree of freedom is little higher than suggestion value ($X^2=1653.96, P=0.0; df=308, X^2/df=5.37, NFI =0.93, CFI=0.94, GFI=0.92, RMSEA=0.082$). Figure2 shows the results of the research model and the standardized path coefficients of the constructs and concepts. The pull effects on switching intention was significant, hence supported hypothesis 2. Mooring effects has negative force to significantly influence switching intentions; thus H3 is supported. Besides, all concepts which we proposed to interpret mooring effects were all representing the mooring force. However, the push effects that make players leave a game was not significant; therefore, H1 is not supported.
Table 2. Correlation Matrix of constructs

<table>
<thead>
<tr>
<th></th>
<th>SI</th>
<th>EN</th>
<th>SA</th>
<th>CR</th>
<th>SC</th>
<th>SR</th>
<th>PE</th>
<th>ATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>0.857*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>0.101</td>
<td>0.725</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>0.020</td>
<td>-0.249</td>
<td>0.792</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>0.033</td>
<td>0.195</td>
<td>-0.109</td>
<td>0.845</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>-0.322</td>
<td>-0.104</td>
<td>-0.064</td>
<td>-0.191</td>
<td>0.614</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>-0.060</td>
<td>-0.266</td>
<td>-0.025</td>
<td>-0.142</td>
<td>0.315</td>
<td>0.725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>0.418</td>
<td>0.012</td>
<td>-0.084</td>
<td>0.036</td>
<td>-0.191</td>
<td>0.096</td>
<td>0.815</td>
<td></td>
</tr>
<tr>
<td>ATS</td>
<td>0.300</td>
<td>0.086</td>
<td>-0.095</td>
<td>-0.091</td>
<td>-0.032</td>
<td>-0.030</td>
<td>0.095</td>
<td>0.604</td>
</tr>
</tbody>
</table>

*Diagonals represent the AVE value (average variance extracted), while the other matrix entries indicate the squared correlations.

Figure 2. Results of SEM analysis

* fixed
** t-value in parentheses, >1.96 is significant, path coefficients are outside.
*** path coefficient with negative value indicate a negative relationships between variables.

6. Conclusion and Limitations

The purpose of this study was to extend the PPM model to explain the online gamers’ switching intention in the virtual worlds (online games). Specifically, “mooring effects” have a stronger influence on the switching intentions of online game players than “pull effects”. However, “push effects” do not have a significant influence on switching intentions.

Mooring effects have the most influence on online gamers’ deflection. In switching literatures, mooring effects are frequently represented by switching costs [13; 17; 25; 33]. Our study proposes factors like social relationship and prior experience also represent the mooring effects. These factors have not received much attention in the literature related to online service; however, in this study, we have shown that they are important aspects of mooring effects. Future online service research should investigate these variables further.

Because gamers are usually students without high income, they do not have a lot of money to spend on online games. Intuitively, switching cost should not be an important factor in the mooring effects. However, to our surprise, the switching cost with a factor loading of 0.45 is the most important factor in the mooring effects. This indicates that, even though gamers do not spend great deal of money on online games, they still consider switching between games may generate high switching costs. This is because switching costs also include the value of property in the virtual world, such as game skill levels and accumulated powerful items, which would be lost by switching to another game [12]. It is likely that most gamers are like teenagers tend to seek attention and recognition by playing game. For example, when the gamers reach a higher gaming level, they gain the respect of their fellow players. Hence, online game player are willing to invest great deal of efforts in a game in order to win the respect and acceptance of their fellow players. However, switching to a new game would means losing the respect and property accumulated in the current game, which may lead to feeling of regret.

Pull effects have the second strongest influence on online gamers’ switching intentions. This study characterizes the pull effect as “alternative attractiveness” and measures it in the questionnaire in terms of the enjoyment, value, and satisfaction of a new online game. These measurements were taken from the literatures relevant to game-playing and service switching [8; 26; 33]. The result of this study suggest that online game providers need to attract players by using the following “pull-forces” to draw players away from their current games: design an online game with playfulness and novelty; lower the subscription fee or even offer free online game; and offer toll-free hot line for solving the problems that arise in a game.
Unexpectedly, push effects do not significantly influence the switching intentions. That is, players will stay with the current online game, even when they perceive the “push-force”. The probable reason is that players do not want to lose the property accumulated in the current game and they may choose to reduce the frequency of login or spend less time to play the current game.

Though this study provides several insights into online game switching decisions, it has several limitations. Our study used the convenience sampling approach to collect data; hence, the potential applications of the findings are limited. Due to budget limitations and time constraints, we could not collect more samples. In addition, it is also possible that some other factors may be added in construct of pull effect. Further research should focus on this construct for formulate much “push forces” in order to attract players to switch.

Reference

Longman.

Appendix A

Survey Instrument

Switching Intention (SI)
Rate the possibility that you would switch from “current game” to a new game within 6 months (please answer below)
Unlikely…Likely
Improbable…Probable
No chance…Certain

Enjoyment (EN)
Please describe your enjoyment feelings while online game-playing (please answer below)
Interesting…Uninteresting
Fun…Not fun
Exciting…Dull
Enjoyable…Not enjoyable

Satisfaction (SA)
Overall, how do you feel about the service provided to you by “my online game provider”?
Displeased…Pleased
Disgusted…Contented
Dissatisfied…Satisfied
They do a poor job…They do a good job
Unhappy…Happy

Critical Participant (CP)
CP1. Most people in my group play an online game frequently (SD…SA)
CP2. Most people in my community play an online game frequently (SD…SA)
CP3. Most people in my class/office play an online game frequently (SD…SA)

Attractiveness (ATS)
ATS1. All in all, competitors would be much more fair than “my current online game provider” (SD…SA)
ATS2. Overall, competitors’ policies would benefit me much more than “my current online game provider’s” policies (SD…SA)
ATS3. I would much more satisfied with the service available from competitors than the service provided by “my current online game provider” (SD…SA)

Switching Costs (SC)
SC1. On the whole, I would spend a lot of time and money to switch from “my current online game” (SD…SA)
SC2. Generally speaking, the costs in time, money, effort, and grief to switch from “my current online game” would be high (SD…SA)
SC3. Overall, I would spend a lot and lose a lot if I switched from “my current online game” (SD…SA)
SC4. Considering everything, the costs to stop playing “my current online game” and start up with a new online game would be high (SD…SA)

Social Relationship (SR)
SR1. I fit in well with the online game members (SD…SA)
SR2. I like the members of the online game (SD…SA)
SR3. In general, online game members act as a cohesive unit (SD…SA)

Prior Experience (PE)
PE1. In the past, I have often switched online games (SD…SA)
PE2. I have a lot of experience in switching online games (SD…SA)