Virtual Teams and Creative Performance

Luis L. Martins Christina E. Shalley Lucy L. Gilson
Georgia Institute of Technology Georgia Institute of Technology University of Connecticut
luis.martins@mgt.gatech.edu christina.shalley@mgt.gatech.edu lucy.gilson@business.uconn.edu

Abstract
We developed and tested a model of the effects of demographic differences (i.e., differences in race, sex, age, and nationality) on creativity in dyads having short-term virtual work interactions. Specifically we examined how demographic differences interacted with dyad processes (establishment of rapport, participation equality, and process conflict) and a key input factor (difference in technical experience), to affect the creativity of dyads working virtually. Differences in nationality had a strong negative direct effect, and interacted with differences in technical experience to affect creativity. Differences in age interacted with dyad processes and differences in technical experience to affect creativity. Differences in sex and race did not significantly affect creativity. Implications are discussed for managing creative virtual work.

1. Introduction

With an increase in global competition, companies have been looking to creativity and innovation to give them a competitive edge [4, 47]. Thus, effectively utilizing knowledge resources wherever they may reside in the organization has become an important strategic priority for organizations [47]. Until recently, much of organizational knowledge was locked within individuals and units separated by various boundaries. However, with advances in information and communication technologies, organizations are increasingly using virtual work to break down boundaries and connect employees regardless of their geographic location and sub-unit affiliation, so that they can combine their knowledge and perspectives to produce creative solutions to various business problems [38]. Indeed, increased creativity and innovation have been touted as among the primary benefits of virtual work [79]. Thus, for example, consulting firms such as Bain and Company and McKinsey and Company use information technology (e.g., e-mail, instant messaging, and databases with consultant expertise) and other communication tools to enable consultants to reach peers in the company’s globally distributed workforce to work collaboratively on client problems as the needs arise, which contributes to their organizations’ ability to provide innovative solutions to their clients [24].

A natural consequence of the increase in global virtual work is that individuals are increasingly working virtually with others who are demographically different from themselves [9, 23]. The extant literature on creativity has generally proposed that demographic differences have the potential to be beneficial for creativity, since demographically different individuals are able to bring to the task different perspectives and approaches [15, 41, 44]. On the other hand, researchers have found that, in the short run, demographic differences make it harder for individuals to work together, potentially reducing creative performance [77]. Whereas there is a growing literature on the effects of demographic differences on creativity in more “traditional” face-to-face work settings [27, 28, 46], the effects have not been examined in virtual work contexts. This study addresses this gap by examining how demographic differences interact with group process and input conditions to affect creativity in short-term virtual work interactions.

Our study contributes to the literature in several ways. Whereas there is a strong interest among managers in using virtual work to enhance creativity, few studies have empirically examined creativity in virtual work [37], and no study has looked at how demographic differences affect creativity in virtual contexts. Prior research linking demographic differences to creativity has either been conducted in face-to-face contexts [27, 46] or compared virtual to face-to-face teams [17, 72], but has not examined these issues when all teams are working virtually. Recently, researchers have argued that most work in organizations is now virtual to some extent, depending on the amount of time the employees spend working together on a task, how much they use technology to support interactions, and their geographic and temporal separation [23, 40, 50]. Therefore, it has been
suggested that we need to move beyond comparing virtual to face-to-face teams, and instead empirically examine variation in behavioral phenomena within virtual work settings. The moderated effects examined here advance understanding of the circumstances affecting the ability of virtual collaborators to leverage their knowledge resources, which prior researchers (40) have suggested is an important area in need of further research. Specifically, examining moderated effects enriches theory on relationships between demographic differences and creativity by investigating how process conditions and an input factor determine whether demographic differences benefit or hurt creativity in virtual work [73, 74].

Theory and Hypotheses

It is important to specify the boundary conditions of the model we developed and tested in this study, as has been recommended in both the diversity and the virtual team literatures [40, 76]. Our unit of analysis was the virtual dyad, which is an important and appropriate unit of analysis to study virtual work. Although there are groupware systems that enable whole groups to interact at the same time, much of the interaction in virtual groups involves two members at any one time working virtually on a component of the team’s task [39] For example, it is typical for a knowledge worker in the US to work with a colleague in Spain, one in Ireland, and one in India, at different times on different parts of the project. Furthermore, in the diversity literature, the dyad has been advocated as an important unit of analysis in need of further research [70].

The demographic differences we focused on were differences in race, sex, age, and nationality, which are among the major dimensions of demographic difference examined in prior work [51, 68, 69]. We focused on on computer-mediated-communication (CMC) (specifically, electronic chat room), which forms a large component of virtual work, particularly among geographically and temporally distributed individuals [23]. In addition, we focused on a dyad’s short-term interactions aimed at solving immediate managerial problems. This short-term time perspective was chosen for a few reasons. First, virtual interactions for short-term problem-solving are prevalent in the workplace today [40]. Additionally, virtual teams have been found to have a shorter lifecycle than face-to-face teams, as they are brought together as needed to work on specific tasks [31, 38]. Finally, since membership in virtual work groups is often fluid, dyadic interactions with any one team member often are of a one-time or short-term nature [79]. Finally, we looked at variation within virtual work, as has been recommended [23, 40], rather than comparing virtual to face-to-face work.

Creativity is defined as the production of novel, potentially useful ideas about work products, services, or procedures [5, 56]. It is a major part of work quality and effectiveness, and has become increasingly valued for a variety of occupations and industries [4, 33]. In collaborative work, creativity requires the pooling together and effective integration of different perspectives, knowledge, and skills on a task [65, 78].

Research on diversity suggests two opposing expectations regarding the effects of demographic differences on creativity, based on the contrasting predictions of the “information/decision making perspective” and the “social categorization and similarity/attraction perspective” [74, 77]. Using the information/decision making perspective, researchers have proposed that the differences in perspective and experiences underlying demographic differences should result in a greater range of information and approaches to a problem being generated, resulting in improved creative problem solving [7, 46]. Also, they have found that working with different others may stimulate consideration of non-obvious alternatives that could lead to higher creativity [41]. Similarly, the group brainstorming literature [48] has found that differences may be beneficial for generation of more novel ideas. For example, McLeod and Lobel (1992) found that ethnically diverse groups produced higher quality ideas. Also, culturally heterogeneous groups were found to generate more alternatives [75]. Thus, this perspective on the effects of demographic differences suggests that they have the potential to contribute to creativity by increasing the number of unique ideas brought to bear on a task [35, 43].

On the other hand, using the social categorization and similarity/attraction perspective, demographic differences are suggested to lead to a variety of process losses yielding negative effects on team performance. The basic premise is that individuals are attracted to those that they perceive to be demographically similar to themselves [11] and who belong to the same social category [10, 66, 71]. Thus, in the short term, demographic differences result in greater conflict, communication difficulties, and other negative processes as well as lower cohesion and social integration [25, 26], and lower creativity [7, 42].

Thus, the diversity literature, basing its arguments in different theoretical and process foundations, has proposed essentially opposing effects of demographic differences on a dyad’s performance, arguing that they can both help and hurt performance [44, 74, 77]. In this paper we focus on the processes and input conditions that determine whether demographic differences will have a positive or negative effect on creativity. Specifically, we examine the moderating effects of processes and input factors that are likely to determine...
the extent of cognitive elaboration and combination of various perspectives on a dyad’s task, which are critical to translating the potential benefits of demographic differences into actual performance benefits [73]. We argue that in order for the potential creativity benefits due to differing perspectives to be realized, it is important that interactions among demographically different individuals enable the surfacing, pooling together, and integration of their differing perspectives [22, 43].

The literature suggests that input and process factors that facilitate positive exchanges, a psychologically safe environment, and the building of a positive relationship are important in determining the quality of interactions in virtual work. This is particularly true in the case of problem solving, which benefits from multiple perspectives but requires dyad members to work through their differences in attitudes and values to arrive at a consensus on solutions [62]. For instance, Taggar (2002) found that a team’s creativity-relevant process moderated the relationship between the average creativity of its members and the team’s creative output. Therefore processes and inputs that facilitate information elaboration may be the keys to reducing the negative effects and accentuating the benefits of demographic differences in virtual dyads [73]. For example, a team’s process skills have been found to be important to leveraging its members’ creative resources [63]. Also, Payne (1990) found that communication patterns in research teams had critical effects on their creativity. The nature of the interaction process of the dyad also may affect how members approach a task, as well as affect their attention to the heuristic aspects of the task. The specific process factors we examined as moderators of the effects of demographic differences on creativity are the degree to which dyad members establish rapport before beginning work on the task, equality of participation in task-related discussions, and degree of experienced process conflict. The input factor we examined as a moderator is the difference in technical experience between dyad members, which prior research has found to be one of the most influential inputs affecting the quality of virtual interactions [50, 53].

Establishment of rapport. Whether members spend time establishing rapport with each other before working on their task can be important for the development of a good working relationship in a virtual dyad [14, 54]. For example, by spending a few minutes with introductions and discussing their approach to working on the task, virtual dyad members can establish a bond of trust that may make it easier for them to work together effectively [37]. Such an establishment of rapport may create a psychologically safe environment [18] in which demographically different virtual dyad members are comfortable raising and discussing differing perspectives on a problem without feeling interpersonally threatened. In keeping with this argument, prior research has found that virtual teams members who spend time at the onset of their work getting to know each other, experience greater trust among members down the road, facilitating the overall effectiveness of their working together [37, 64]. This also should help them to overcome the interaction difficulties in working virtually. Therefore, we expect that demographically different virtual dyads that establish rapport to a greater degree will be better able to surface, discuss, and integrate differing perspectives, resulting in enhanced creativity. In contrast, demographically different virtual dyads that do not establish rapport may find that their differences lead to difficulties in working together, thus reducing creativity.

Hypothesis 1: Demographic differences in virtual dyads will be positively related to creativity when there is greater establishment of rapport in the dyad, and negatively related to creativity when there is less establishment of rapport in the dyad.

Participation equality. Participation equality reflects the extent to which each member of the dyad participates equally in task interactions. Researchers have proposed that participation equality is important to leveraging the different perspectives underlying demographic differences to improve performance [19, 76]. In a diverse group, participation equality may enable “cognitive elaboration and information exchange within work groups, drawing out the different knowledge and skills represented” [76]. Thus, more equal participation enables better surfacing and discussion of different ideas, resulting in greater creativity [65]. For example, Leenders and colleagues (2003) found that for new product development teams, it was best for creativity to have all members sharing ideas, leading to a constructive dialogue, with no one member dominating. Similarly, Krumpel (2000) found that, in order for effective knowledge production to occur in a virtual team, perspectives of all team members needed to be raised and debated. Also, Gilson and Shalley (2004) found that teams that valued participation by all members were more creative. Consideration of the variety of views and ideas represented in a demographically diverse dyad should lead to an expanded source of knowledge to use in decision making. Also, the intellectual stimulation of considering others’ ideas should encourage exploratory thinking, resulting in greater creativity. However, effective collaboration and participation are necessary for virtual teams to successfully integrate various team
about aspects of Process conflict. Participation equality in the dyad.

Hypothesis 2: Demographic differences in virtual dyads will be positively related to creativity when there is greater participation equality in the dyad, and negatively related to creativity when there is less participation equality in the dyad.

Process conflict. Process conflict is “controversies about aspects of how task accomplishment will proceed” [32]. Greater process conflict increases uncertainty and reduces the ability of groups to pool together their ideas effectively to come up with collective solutions to problems [32]. Thus, for a demographically different virtual dyad, a high level of process conflict worsens interaction difficulties caused by their differences and virtual interaction, leading to process losses [45]. The greater process conflict, by increasing process losses, will negatively impact the creativity of demographically different virtual dyads. In contrast, based on the diversity literature [13, 77], when a dyad does not experience a great deal of process conflict it may be able to reduce interaction difficulties caused by demographic differences and virtual interaction, and thus enhance effective discussion and integration of differing perspectives to arrive at creative solutions. Consistent with this, effective collaboration has been found to be a key determinant of creativity and innovation in teams [6]. Thus, dyads that have effective processes for integrating their efforts may be better able to overcome the low media richness of virtual interaction technologies and to integrate differing perspectives brought to a task by demographically different dyad members, to produce creative outcomes.

Hypothesis 3: Demographic differences in virtual dyads will be negatively related to creativity when there is greater process conflict in the dyad, and positively related to creativity when there is less process conflict in the dyad.

Differences in technical experience. Members of virtual dyads may be expected to differ in their extent of experience in using the technologies needed to interact virtually. Prior research has found that teams whose members all have high levels of competence in using virtual work technologies perform better than those in which some members are more proficient in using the technologies than others [52]. Similarities in technical experience may thus create a positive context for demographically different dyad members to surface and discuss their differing perspectives. Differences in technical experience, on the other hand, may create communication and interaction problems that exacerbate the interaction difficulties due to demographic differences and the low media richness of virtual communication technologies. Differences in technical experience may cause frustrations and misuses in virtual interactions, as the differences become a process barrier to smooth interactions. Similar levels of technical experience, on the other hand, may provide a common platform that establishes the nature of the interaction among virtual dyad members (i.e., both members will face the same difficulties or may have the same level of proficiency). Therefore, when there are wide differences between members of a dyad in their technical expertise, the dyad may have greater difficulty in operating effectively in a virtual context. In such a circumstance, it may be expected that the dyad will have difficulties in establishing interactions that surface and utilize differing perspectives, thus reducing creativity.

Hypothesis 4: Demographic differences in virtual dyads will be negatively related to creativity when there is a greater difference in technical experience between the members of the dyad, and positively related to creativity when there less of a difference in technical experience between the members of the dyad.

2. Methods

Sample, Task, and Procedures

The sample consisted of 94 MBA students in an organizational behavior course. The class worked on a virtual work project and students filled a survey. The sample was demographically diverse: 33% were female, 45% international, representing 24 countries, and 36% non-white, ranging in age from 23 to 42 (27.6 year average). All participants were proficient in spoken and written English (average TOEFL score for international students was 637 out of a possible 777).

A complex heuristic task for which responses were open-ended, did not have “correct answers,” and required a dyad to “seek consensus on a preferred alternative” [62, pp. 89], that has been used in a number of prior creativity studies [55, 57, 80] was used. Researchers have noted that for this type of problem-solving task, “a preferred, rather than a correct, answer is being sought, attaining consensus requires communication not just of facts but also of values, beliefs, and attitudes regarding the merits of alternative solutions” [62]. Participants were asked to
generate solutions to various human resource problems (e.g., employee theft, motivating the sales force) that typically arise and that managers need to be able to effectively solve. The participants were told that we were particularly interested in creative solutions, so they should try to think of unique ways to solve the problems that also would work well in the company.

Participants were randomly assigned a partner to collaborate with, yielding 47 yads. Members of 59.57% dyads were of different races, 53.19% of different sexes, and 63.83% of different nationalities. The difference in age between dyad members ranged from 0 to 16 years (3.89 year average). Dyads were only allowed to communicate with their partner in an electronic chat-room. They were given 60 minutes to work. They completed a brief survey before working that collected demographics and extent of prior technical experience with computer-based interaction.

Measures

All were asked to indicate their race, sex, age, and nationality. As has been done in previous research (69), we used dichotomous measures for differences in race, sex, and nationality, (0 indicating no difference, and 1 indicating a difference in the respective characteristic), and computed difference in age as the squared difference between the ages of the two dyad members. As noted by Tsui and O'Reilly (1989: 408), “[t]his distance measure is a dyadic analog of the D-score previous research has used to measure demographic distance in groups.”

According to Amabile (1996), a product is creative if observers independently agree that it is novel and appropriate. Two graduate research assistants independently rated the creativity of all solutions generated, on a 7-point scale (1 = not at all creative; 7 = extremely creative). Inter-rater reliability was assessed using rwg, which assesses the “proportion of systematic variance in a set of judgments in relation to the total variance in the judgments” [30, pp. 86]. The median r wg for the creativity ratings was .97, which is well above the suggested cut-off of .70 [30]. Thus, each team’s overall creativity score was computed as the average of the two raters’ ratings.

We retained a transcript of their interactions and two raters coded the following on a 7-point scale: establishment of rapport, equality of participating, and process conflict. Inter-rater agreement was assessed using r wg (30). The median r wg for the process ratings was .97. For each of the three process factors, the ratings assigned by the two raters were averaged.

For technical experience, respondents were asked to indicate on a 5 point scale (1 = none; 5 = a great deal) their degree of experience with using e-mail, chat rooms, bulletin boards, and any other electronic collaboration technologies. Responses were averaged across the four items (alpha = .71). For each dyad, difference in technical experience was computed as the variance between the scores of its members.

3. Results

The hypotheses were tested using hierarchical regression analysis. The variables were entered into the hierarchical regression equation in 4 steps. All significant moderated effects found were plotted using recommended procedures [2].

Hypothesis 1 was supported (p < .05) for differences in age, but not for differences in race, sex, or nationality. The plot of the interaction indicates that differences in age was positively related to creativity when there was more establishment of rapport, and negatively related to creativity when there was less. Hypothesis 2 was supported (p < .05) for differences in age, and marginally supported (p < .10) for differences in race, but was not supported for differences in sex or nationality. The plot of the interaction of difference in age and participation equality indicates that differences in age was positively related to creativity when there was relatively equal participation by both dyad members in the virtual work interaction, but was negatively related when there was less equal participation. Similarly, the plot of the interaction of difference in race and participation equality indicates that difference in race was positively related to creativity when there was relatively equal participation by both dyad members in the virtual work interaction, but was negatively related to creativity when there was less equal participation. Hypothesis 3 was supported (p < .01) for differences in age, but not for other differences. The plot of the interaction indicates that differences in age was negatively related to creativity when there was high process conflict, but was positively related to creativity when there was low process conflict. Hypothesis 4 was supported (p < .05) for differences in age and to some extent for differences in nationality, but not for differences in race or sex. The plot of the interaction of differences in age and differences in technical experience indicates that differences in age was negatively related to creativity when there was a large difference in technical experience in the dyad, but was slightly positively related when there was a smaller difference in technical experience. The plot of the interaction of differences in nationality and differences in technical experience indicates that a difference in nationality was more negatively related to creativity when there was a
greater difference in technical experience than when there was a smaller difference.

4. Discussion

The pattern of our findings is relatively consistent when looked at from the perspective of the various dimensions of difference we examined. We found that our hypotheses were consistently supported for differences in age. The effect of differences in age on creativity in virtual dyads was contingent on various dyad processes and on differences in technical experience. All the process factors we examined moderated the effects of age differences on creativity. We found that a difference in age led to greater creativity when dyad members had spent some time establishing rapport, when each dyad member had equal participation in the discussion, and when process conflict was low. These findings support the idea that when demographically diverse virtual dyads are able to utilize effective processes, they are better able to deal with interaction difficulties that may arise from their differences and virtual interaction, and thus to benefit from the differences in perspectives associated with their age differences. In contrast, when such processes are not in place, the interaction difficulties caused by age differences and virtual interactions may lead to lower creativity. We found that the difference in technical experience was an important moderator of the effects of differences in age on creativity, such that it exacerbated the negative effect of differences in age on creativity. Differences in technical experience likely created communication problems that further increased the difficulty of interaction beyond that already caused by a difference in age and the virtual medium, thereby reducing creativity. Our findings for age differences are consistent with the suggestion in prior research that contextual conditions may be important in determining the effects of age differences on outcomes [59].

For differences in nationality, we found only one significant interaction effect, and that was not entirely in the predicted direction. Essentially, for dyads made up of different nationalities, even relatively even technical experience did not produce a positive effect of differences in nationality on creativity, although it did reduce the strength of the negative effect experienced by dyads with unequal technical experience. In addition, we found a strong direct effect for differences in nationality on creativity. The finding is consistent with prior research that has found that national differences create communication problems in cross-national teams [67], and points out that these problems may be amplified by differences in technical experience when working virtually. Furthermore, the negative effect for differences in nationality on creativity was not moderated by a dyad’s interaction processes. This lack of moderation suggests that the interaction difficulties encountered in cross-national virtual working may not be easily overcome in short-term virtual interactions, such as those examined in this study. Given that short-term problem-solving interactions among globally distributed employees are becoming increasingly common, our finding suggests that much more research needs to be conducted in order to understand and manage such interactions.

For differences in race and sex we essentially did not find significant effects, save for the one marginally significant interaction between difference in race and participation equality. This may be because compared to the effects of differences in race and sex in a face-to-face context, their effects may be somewhat more nuanced in a virtual context. Effects of demographic differences hinge on the cognitive availability of demographics which feed into social categorization processes [73]. In face-to-face interactions, demographic characteristics such as race and sex are “easily observable” (44), since they are “surface-level” characteristics [25]. However, virtual communication technologies are low in the richness of information carried, which reduces the cognitive availability of demographic differences in virtual interactions (61). Thus, rather than react to surface-level characteristics using social category stereotypes, members of demographically different virtual dyads may instead focus on differences in virtual interaction patterns that may accompany their demographic differences.

It is likely that differences in sex and race had little effect on creativity because prior research has not found these characteristics to be related to interaction patterns in virtual work. For example, researchers have found that there are no readily detectable differences in the behavior of men and women in a virtual context, such as in the extent of interaction [21]. Furthermore, individuals in virtual groups have been found to pay less attention to differences in sex even when they were known than did those in face-to-face groups [8]. Similarly, there is no evidence that one’s race affects how one interacts in virtual work settings. Thus, it seems reasonable that a virtual dyad’s differences in race and sex should not affect the dyad’s creativity.

In contrast, differences in age and nationality have been found to impact interaction patterns in virtual work. Individuals from different nationalities may encounter difficulties in interacting virtually due to cross-national differences in communication styles, and differences in word connotations even when communicating in the same language [79]. Thus, for example, researchers have found that in virtual teams, members from individualistic countries tended to
Prior research has found that an individual’s difficulties in communication in virtual dyads may arise in virtual interactions between members of collectivistic countries [67]. Furthermore, difficulties may arise in virtual interactions between members from different nationalities, due to differences in reliance on body language, facial expressions, gestures, and physical distance in their ability to communicate in their respective countries [20]. Also, national differences in usage of the English language may cause difficulties in communication in virtual dyads [79]. Prior research has found that an individual’s age affects his or her attitude toward, and comfort with the use of information technologies such as e-mail [1]. Also, individuals of different ages may communicate differently, in terms of formality of communication style, their use of slang or certain terms, and norms regarding communication in general [36].

This study is the first study to examine how process and input factors influence the relationship between demographic differences and creativity in a virtual work context. As such, it contributes to research on creativity, virtual work, and diversity. Shalley, Zhou, and Oldham (2004), in their recent integration of the creativity literature, called for more research on team creativity, since prior research on creativity has tended to focus on individual creativity, with only a few studies having examined team creativity [22, 65]. Also, the teams examined in these studies, and in related work on group brainstorming, tended to be more traditional face-to-face problem-solving groups rather than teams working virtually. Since most employees are now working virtually at least to some extent in their collaboration with coworkers, research is needed that explores what aspects are most important for creativity in virtual work [40]. In this study we address this topic by providing insights into how demographic differences may affect the performance of teams working virtually on a problem-solving task.

While researchers have consistently called for research on the moderation by group input and process variables, of the relationships between demographic differences and outcomes [44, 74, 77], there are very few studies that have examined this in face-to-face contexts [13, 26], and none in virtual contexts. Our study contributes to developing an understanding of the circumstances that enable demographically different coworkers to overcome interaction difficulties, and thus to improve the quality of their performance. Essentially, our findings indicate that demographic differences can be effectively used to tease out creative contributions as long as organizations focus on important team input and process factors.

Whereas our results point out the importance of effective processes in determining the outcomes of demographic differences in virtual dyads, achieving these effective processes may be difficult due to the nature of virtual interaction media. Virtual communication technologies are low in media richness (i.e., in their “abilities to convey messages that communicate rich information” such as feelings and tone of communication) [12, 16]. Also, virtual communication tends to be low in social presence, or the “feeling one has that other persons are involved in a communication exchange” [60]. Similarly, virtual interactions also have been found to have reduced social context cues, which are needed to provide information on the social context and the roles and expectations of participants in an interaction [61]. The low media-richness, social presence, and social context cues afforded by virtual communications make the development of positive interpersonal interaction patterns difficult, particularly in the short-term [12, 61]. This in turn makes it difficult to communicate well during short-term virtual problem-solving interactions that require members to communicate complex cognitive structures such as values, beliefs, and attitudes regarding potential solutions to problems [21]. Thus, managers should place priority on monitoring and influencing team processes in virtual teams.

Given that working virtually requires a certain level of technical expertise, attention should be paid to making sure that employees are comfortable with the technology and can easily use it to interact. This is particularly important for virtual teams that are working across national boundaries, as differences in technical abilities may cause interaction difficulties that worsen the interaction difficulties of working across nationalities. Also, developing routines that encourage the formation of rapport early on in virtual interactions may benefit performance when there are large age differences between individuals. This could be done by encouraging employees to initially make time in a virtual interaction to chat and get to know each other. Finally, knowledge of our results can lead to the design of process interventions to improve creativity. For example, when individuals work virtually, managers should pay attention to facilitating the process by training in communication and process management skills.

5. References

