Finding a minimum-sum dipolar spanning tree in \mathbb{R}^3 *

Steven Bitner and Ovidiu Daescu
Department of Computer Science
University of Texas at Dallas
Richardson, TX 75080, USA

Abstract

In this paper we consider finding a minimum-sum dipolar spanning tree in \mathbb{R}^3, and present an algorithm that takes $O(n^2 \log^2 n)$ time using $O(n^2)$ space, thus almost matching the best known results for the planar case. To achieve this, we prove an interesting result related to the complexity of the common intersection of n balls in \mathbb{R}^3, of possible different radii, that are all tangent to a given point p.

The problem has applications in communication networks, when the goal is to minimize the distance between two hubs or servers as well as the distance from any node in the network to the closer of the two hubs, and could lead to reduction in power consumption for devices like PDAs, sensors, cell phones and laptops.

1 Introduction

For a set S of n points, the geometric minimum diameter spanning tree (MDST) is defined as a spanning tree of S that minimizes the Euclidean length of the longest path in the tree.

The problem of finding the geometric minimum diameter spanning tree for a set of points has been studied extensively in the past two decades, due to its various applications. For example, the MDST can be used to minimize the maximum distance required for a message to travel between any two nodes in a communication network, while keeping the number of network connections at a minimum.

In [6], it has been proven that there always exists a monopolar or a dipolar MDST, i.e., a MDST with only one or two nodes of degree greater than one.

However, while a monopolar MDST can be found in $O(n \log n)$ time [6], finding a dipolar MDST efficiently has proven to be an elusive task, even for the planar case [2, 6].

Specifically, for the dipolar MDST the goal is to find two points $x, y \in S$ that minimize the sum $r_x + |xy| + r_y$, where $|xy|$ is the Euclidean distance between the points x and y, and r_x and r_y are the radii of two disks with centers at x and y, respectively, that together cover all points in S.

The best known result is based on semi-dynamic data structures and achieves $O^*(n^{3-c_d})$ time [2], where the O^*-notation hides an $O(n^\epsilon)$ term, for any constant $\epsilon > 0$, and $c_d = 1/((d + 1)((d/2) + 1))$ is a constant that depends on the dimension d of the point set. For example, $c_2 = 1/6$ and $c_3 = 1/12$.

In [4], Gudmundsson et al. introduce a related (facility location) problem, the minimum-sum dipolar spanning tree (MSST) problem, in which the goal is to find two points $x, y \in S$ that minimize the sum $|xy| + \max\{r_x, r_y\}$.

Intuitively, the MSST is useful when one must choose two servers to service a set of clients, while the servers must also share data between them frequently. For example, it can be used in communication networks, when the goal is to minimize the distance between two hubs or servers as well as the distance from any node in the network to the
closer of the two hubs, and could lead to reduction in power consumption for devices like PDAs, sensors, cell phones and laptops.

Gudmundsson et al. [4] present exact results when \(S \) is a set of \(n \) points in \(\mathbb{R}^d \), for \(d \in \{2, 3, 4\} \). For the planar case, they show how to find the MSST in \(O(n^2 \log n) \) time using \(O(n^3) \) space. For dimensions \(d = \{3, 4\} \), they suggest a solution based on range searching that takes \(O(n^2 \log \log n) \) time using \(O(n^3) \) space, for any constant \(\epsilon > 0 \).

1.1 Results

In this paper we consider finding an MSST in \(\mathbb{R}^3 \), and present an algorithm that takes \(O(n^2 \log^2 n) \) time using \(O(n^3) \) space, thus almost matching the best known results for the planar case. To achieve this, we prove an interesting result related to the complexity of the common intersection of \(n \) balls in \(\mathbb{R}^3 \), of possible different radii, that are all tangent to a given point \(p \).

1.2 Definitions and terminology

For two points \(a \) and \(b \), \(|ab|\) denotes the Euclidean distance from \(a \) to \(b \). We use \(\Sigma(a, b) \) to denote the ball centered at \(a \) and having \(b \) on its bounding sphere, that is, the radius of the bounding sphere of \(\Sigma(a, b) \) has length \(|ab|\).

Let \(p, q \) be two points in \(S \), and let \(\Pi \) be the plane that is the perpendicular bisector of the line segment \(pq \). We use \(h_{pq} \) to denote the open half-space bounded by \(\Pi \) and containing \(p \). Similarly, \(h_{qp} \) denotes the open half-space bounded by \(\Pi \) and containing \(q \).

Given \(p, q \in S \), the \(q \)-farthest point \(f_{pq} \) is defined as the farthest point from \(p \) that is contained in the open halfspace \(h_{pq} \) (see Figure 1). A critical step in our solution is finding \(f_{pq} \) for a fixed \(p \) and all \(q \in S \setminus \{p\} \) efficiently.

![Figure 1: p, q, and the q-farthest point \(f_{pq} \).](image)

2 Finding the MSST in \(\mathbb{R}^3 \)

In this section we present our solution for finding a minimum-sum dipolar spanning tree in \(\mathbb{R}^3 \). To this end, we extend to \(\mathbb{R}^3 \) a lemma from [4] (Lemma 1 below), prove a key property on the complexity of the common intersection of balls all tangent to a point \(p \), that could be of more general interest, and give an algorithm to compute the MSST within the claimed time and space bounds.

Lemma 1 The point \(x \in S \) is the \(q \)-farthest point from \(p \) iff \(x \) is the farthest point from \(p \) satisfying \(q \notin \Sigma(x, p) \).

Proof. \(\Rightarrow \) Since \(x \) is the \(q \)-farthest point from \(p \), by definition, it is contained in the open half-space \(h_{pq} \) and no other point of \(S \) in \(h_{pq} \) is farther from \(p \) than \(x \). Note that all points of \(S \cap h_{pq} \) must have a smaller distance to \(q \) than to \(p \) since the halfspace \(h_{qp} \) is defined by the orthogonal bisecting plane of \(pq \) (see Figure 1). That is, for any point \(y \in S \cap h_{pq} \) the radius of the ball \(\Sigma(y, p) \) is greater than \(|yq|\), thus \(q \notin \Sigma(y, p) \). Then, \(q \notin \Sigma(x, p) \) would imply \(|xq| < |xp|\), which means \(x \in h_{qp} \), a contradiction. Thus, \(q \notin \Sigma(x, p) \).

Since all points \(x_i \in h_{qp} \) violate the statement that \(q \notin \Sigma(x_i, p) \), and the \(q \)-farthest point is the point with the greatest distance from \(p \) that is not in \(h_{qp} \), the \(q \)-farthest point
from p is the farthest point from p where $q \not\in \Sigma(x, p)$.

\Leftarrow Since $q \not\in \Sigma(x, p)$, we have $|xp| < |xq|$. The half spaces h_{pq} and h_{qp} are defined by the perpendicular bisecting plane of pq, so all points $y \in S$ with $|yp| < |yq|$ are contained in h_{pq}. (A similar argument can be made for those points in h_{qp}.) Thus, x is the farthest point from p among those in $S \cap h_{pq}$, which is precisely the definition for the q-farthest point.

Then, the approach presented in [4] for the planar case can be extended to \mathbb{R}^3. Specifically, for a fixed point $p \in S$, we can label all points $q \in S \setminus \{p\}$ with the q-farthest point f_{pq} as follows.

First, sort S in order of non-increasing distance from p. Second, set f_{pq} for all points in S to be NULL. Third, pass through the sorted array and for each point q_i, in order, set f_{pq} to q_i for all points $q \in S$ that are not contained by the ball $\Sigma(q, p)$ and for which f_{pq} is set to NULL. That is, all points of S that are in $\cap_{k=1}^{i-1} \Sigma(q_k, p)$ but not in $\Sigma(q_i, p)$, are labeled with q_i, where $i = 1, 2, \ldots, n - 1$.

After the sorting above, the last value in the sorted array of points in $S \setminus \{p\}$ is the point which has minimum Euclidean distance from p. Therefore $D(q_n, p) = D(p, p) = 0$. This implies that f_{pq} is set for all points in $S \setminus \{p\}$. The sorted ordering also ensures that at any step in the algorithm, f_{pq} for any point q_i is the point corresponding to the smallest index j for which $q_i \in \cap_{k=1}^{i-1} \Sigma(q_k, p)$ and $q_i \not\in \Sigma(q_j, p)$. This means that given q_i as q, q_j is the farthest point from p whose ball $\Sigma(q_j, p)$ does not contain q_i, which matches the definition of f_{pq} for the given pair p, q_i.

This implies that the generic algorithm for finding the q-farthest point for a fixed point p and all $q \in S$ described in [4] for the planar case can also be applied in \mathbb{R}^3. We note that in \mathbb{R}^3, the problem of finding the smallest index j for which $q_i \in \cap_{k=1}^{j-1} \Sigma(q_k, p)$ and $q_i \not\in \Sigma(q_j, p)$ is also related to the off-line ball exclusion testing problem introduced in [1]. We present this algorithm below and then show how to perform the computations associated with it efficiently in \mathbb{R}^3, so that by applying it for each $p \in S$ we achieve the claimed time and space bounds.

Without loss of generality, assume that $n = 2^k$ for some integer k. Build a complete binary tree T with k levels as follows. The leaves of T are associated with the balls $\Sigma(q_i, p), i = 1, 2, \ldots, n$, in order. That is, the leftmost leaf of T stores $\Sigma(q_1, p)$ and the rightmost leaf of T stores $\Sigma(q_n, p)$. Each internal node v of T stores a data structure associated with the common intersection of the balls that are leaf descendants of the sub-tree of T rooted at v (see Figure 2). Given a point q_i, to find the smallest index j for which $q_i \in \cap_{k=1}^{j-1} \Sigma(q_k, p)$ and $q_i \not\in \Sigma(q_j, p)$ start at the root of T and follow a path to a leaf of T, at each node v along the path performing the following test: if q_i is in the common intersection stored at the left child of v then go to the right child of v, else go to the left child of v. Clearly, the index associated with the leaf where this search ends corresponds to the sought j.

While the common intersection of n balls all having the same radius has complexity $O(n)$ [5], in our case the radii are not equal, and it is known that if the radii are not equal the common intersection can have complexity $\Omega(n^2)$. Thus, it is easy to check that a direct application of the algorithm above, with no other properties (like equal radii) in place, for each $p \in S$, would result in a solution for the MSST that takes cubic time and uses quadratic space, which is no better than brute force.
The astute reader may have noticed that answering whether a point q is inside the common intersection of a set of balls in \mathbb{R}^d may not require the actual computation of the common intersection of the balls. In fact, a ray shooting based approach to answer this query has been presented in [1], for solving a related problem termed off-line ball inclusion testing.

Daescu et al. use a standard geometric mapping, that lifts the point q to a paraboloid in dimension $d + 1$ and maps the balls into $(d + 1)$-dimensional hyperplanes. The intersections of the hyperplanes with the paraboloid, projected back to dimension d, are the original balls.

With this lifting, answering whether a point q in inside the common intersection of n balls in \mathbb{R}^d is equivalent to answering whether a point in dimension $d + 1$ is below the lower envelope of a set of n $(d + 1)$-dimensional hyperplanes. They [1] showed that using a static data structure for ray shooting queries, that allows for trade-offs between the preprocessing time and the query time, answering the later question for a set of n query points can be done in time and space $O(n^{2-2/(d/2)} \log^{O(1)} n)$.

Since we have to do this once for each $p \in S$, the overall time to find the MSST is $O(n^{3-2/(d/2)} \log^{O(1)} n)$. Each ray shooting data structure can be discarded after serving its purpose, so the overall space requirement remains $O(n^2)$.

Thus, for any constant dimension d, we obtain the following result.

Lemma 2 Given a set S of n points in \mathbb{R}^d, $d \geq 2$ a constant, the MSST of S can be found in $O(n^{3-2/(d/2)} \log^{O(1)} n)$ time and $O(n^2)$ space.

For $d = 3$ or 4, this gives an algorithm for the MSST with running time $O(n^{7/3} \log^{O(1)} n)$ = $O(n^{2.33(3)} \log^{O(1)} n)$, which is better than the $O(n^{2.5+\epsilon})$ time algorithm in [4].

![Figure 3: Circles c and c' in the plane of a, b, p.](image)

Surprisingly however, a faster solution can be obtained in \mathbb{R}^3 by actually computing the common intersection of the balls stored at internal nodes of T. For this, we need the following property.

Lemma 3 Consider the common intersection of a set B of n balls $\Sigma_1, \Sigma_2, \ldots, \Sigma_n$ in \mathbb{R}^3, all tangent to a point p. Each ball can contribute at most one connected component to the boundary of the common intersection.

Let a, b be two points on the boundary of the common intersection $bd(B^\cap P)$ of the balls in B, both on the same bounding sphere s of some ball in B. The plane defined by $a, b,$ and p intersects s in a circle c. The geodesic connecting a and b along c on s (the arc $\hat{a}b$ of c) must be in $bd(B^\cap P)$; otherwise, if another ball contains a and b but not some other point q on $\hat{a}b$, then the bounding sphere s' of that ball defines a circle c' in the plane of $a, b,$ and p that has radius greater than that of c and contains p (see Fig. 3), a contradiction to the fact that s' is tangent to p. Thus, $bd(B^\cap P) \cap s$ has at most one connected component. □

Assuming general position (that is, no more than three bounding spheres intersect in a point other than p),
Lemma 3 implies the complexity of $bd(B^c)$ is $O(n)$.

Lemma 4 Given a set S of n points in \mathbb{R}^3 and n balls $\Sigma_1, \Sigma_2, \ldots, \Sigma_n$, all tangent to a point p, there exists a data structure such that for each point $q \in S$, the smallest index i such that Σ_i does not contain q can be found in $O(\log^2 n)$ time. This data structure uses $O(n \log^2 n)$ space and requires $O(n \log^2 n)$ preprocessing time.

![Diagram](image)

The data structure is the complete binary tree T described earlier enhanced with point location capability at each internal node. The intersection of the balls associated with the internal nodes is computed in a bottom-up fashion, using the algorithm in [7]. Although that algorithm was designed for equal radius balls, we note that the only place in that algorithm where equal radii plays a role is in obtaining the property that each ball contributes only one connected component to $bd(B^c)$. The algorithm computes the common intersection at each internal node by merging the intersections stored at its children and takes $O(n \log^2 n)$ time over T.

Let Π' be the plane through p and tangent to $bd(B^c)$. At each internal node v, we unfold the common intersection by projecting it from p to a plane Π that is parallel to Π' and such that $bd(B^c)$ is sandwiched by Π and Π' (see Figure 4). This unfolding can be done in time linear in the complexity of the intersection stored at v. We refer to the resulting planar subdivision as Ξ_v.

Finally, we preprocess Ξ_v for planar point location queries [3]. The overall construction time and space for T is dominated by the computation of the common intersection of balls. Thus, the data structure can be built in $O(n \log^2 n)$ time and uses $O(n \log n)$ space.

As explained earlier, a query with a point q follows a path from the root to a leaf of T, where the leaf gives the sought index.

To decide whether q is inside the common intersection $bd(B^c)$ stored at the left child of an internal node u, we shoot a ray from p through q; if the ray does not intersect Ξ_v then $q \notin bd(B^c)$ otherwise we obtain a point q' on Ξ_v (see Figure 4). We perform a point location query for q', which takes $O(\log n)$ time [3].

If q' does not fall within a bounded face of Ξ_v, then the search at this node is done, and we traverse the left sub-tree.

If q' is contained within some bounded face of Ξ_v, we check whether q is inside the corresponding ball. This can be done by comparing the Euclidean distance from p to q with that from p to the intersection point q'' of the ray from p to q with the face f which corresponds to the planar region in Ξ_v containing q'.

If $|pq| > |pq''|$, then this point is not contained in the intersection and we traverse the left sub-tree, otherwise we traverse the right sub-tree.

The overall query time along the root-to-leaf path is thus $O(\log^2 n)$.

Since the data structure for p can be discarded after f_{pq} is found for each $q \in S \setminus \{p\}$, we obtain:

Theorem 1 Given a set S of n points in \mathbb{R}^3, the MSST of S can be found in $O(n^2 \log^2 n)$ time using $O(n^2)$ space.

We also mention that from an implementation viewpoint this solution should be easier to implement than the ray
shooting based solution. Moreover, all of the geometric primitives required by this algorithm have been implemented in various geometric packages and are readily available for use.

References

