

Retrofitting Cyber Physical Systems for Survivability through External
Coordination

 Kun Xiao, Shangping Ren Kevin Kwiat

Computer Science Department,
Illinois Institute of Technology

{kxiao3, ren}@iit.edu

Information Directorate
Air Force Research Laboratory

kwiatk@rl.af.mil

Abstract
Most Supervisory Control and Data Acquisition

(SCADA) systems have been in operation for decades
and they in general have 24x7 availability requirement,
hence upgrading or adding new fault tolerant logic into
the systems to sustain faults caused by cyber attacks
when these systems evolve into a cyber environment is
often difficult to achieve. In the proposed approach, an
external coordination layer is constructed that only
interfaces with the SCADA systems through events and
separate from the process under control. The
coordination layer is a combination of transparent
management of fault-tolerant schemes of critical
services of a SCADA system and a model for
coordinating different critical services when faults
caused by cyber attack occur in that system. In addition,
security-related knowledge, such as cyber attack
patterns and potential fatal states, etc., are also modeled
and built into the coordination layer. The advantages of
our approach are twofold: (1) the survivability-related
knowledge and protection scheme are built in the
coordination layer which is external to the SCADA
systems and therefore the disturbance to the underlying
systems is greatly reduced; (2) “separation of concern”
principle is truly reflected in our model in that fault-
tolerance, security and survivability concerns are
separated from supervisory and acquisition. In addition,
the external coordination model will enable us to
accommodate future requirements that may not even be
anticipated today.

1. Introduction

The Supervisory Control and Data Acquisition
(SCADA) system is a specialized software package
positioned on top of hardware that needs to be
monitored and controlled. SCADA systems perform
important roles in many of the nation’s critical
infrastructures, ranging from electric power generation,
transmission, and distribution to railroads and mass

transit [1]. In general, these infrastructures have two
layers:

1. Physical layer. This layer consists of physical

units and infrastructures, such as power
distribution unit, plumbing, wiring, etc. that are
used to deliver essential services.

2. Cyber layer. This layer contains computers,
networks and data gathering sensors that are used
to monitor and control the physical layer. The
SCADA system is the main part of this layer.

Both the SCADA systems and the underlying
physical systems have strict survivability requirements
on a twenty-four-hours-a-day, seven-days-a-week
(24x7) basis. Here survivability means the capability of
a system to fulfill its mission in a timely manner, even
in the presence of attacks, failures, or accidents [2].
Different from fault-tolerant systems which are
generally engineered to tolerate random natural failures,
system survivability must also consider unpredictable
faults which may be caused by intentional attacks.

SCADA systems are developed to monitor and
estimate the current operation state [9], collect,
analyze, and diagnose fault alarms [10], as well as use
redundant techniques to provide fault tolerance [11] for
underlying physical systems. However, most existing
SCADA systems themselves become a point of
vulnerability when they evolve into a cyber
environment. The available security technologies
unfortunately are not targeted for protecting SCADA
systems, and there are some misconceptions [3] as
follows:

1. SCADA system resides on a physically separated

and stand alone network.
2. Connections between SCADA systems and other

corporate networks are protected by strong access
control schemes.

3. SCADA systems require special knowledge,
making them difficult for network intruders to
access and control.

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

1530-1605/08 $25.00 © 2008 IEEE 1

4. In the underlying physical layer, all fault alarms are
assumed to be caused by hardware or software
malfunctions, and can be treated by common fault
tolerance techniques.

In recent years, operators of those critical

infrastructures have come to realize the benefits of
sharing SCADA information with corporate networks.
However, the ability to access and control processes
once isolated to standalone networks has rendered them
vulnerable to cyber attacks from a variety of sources,
including hostile governments, terrorist groups,
disgruntled employees, and other malicious intruders.
The 2003 incidence where a disgruntled Australia
engineer released tons of dirty water upon city grounds
to gain revenge against his supervisor is an example
[25].

Most of national infrastructures, such as power grids,
water management and supply systems, are built
decades ago. These infrastructures have gradually
evolved into cyber systems and have been enjoying the
flexibility and productivity that modern technology,
such as the Internet, has brought. However, the side
effects and risks associated with these technologies in
this very special area are nevertheless not fully
addressed.

One of the main challenges is that these systems have
a 24x7 availability requirement that inhibits the
‘shutdown and upgrade’ approach that otherwise is an
effective way to handle emerging concerns.
Furthermore, such a high availability requirement
makes these systems highly sensitive to changes. These
adversary properties of the SCADA systems hence
require that any QoS enhancement must be done
through a non-intrusive way. In addition, unlike
traditional fault tolerance measures with which the
central control and administration are sufficient,
survivability in a cyber environment must address
highly distributed, dynamic and unbounded
environments that lack central control and unified
policies [29].

To overcome this challenge and ensure software
system dependability in cyber environments, a model
that captures the characteristics of the system and the
environment becomes essential. As critical information
systems emerge from “closed castle” into distributed
paradigms, the co-operation among distributed elements
which compose of the larger cyber systems inevitably
becomes the focus of such systems.

The rest of the paper is organized as follows: Section
2 discusses related work. Section 3 presents our
solution for improving survivability of SCADA systems
in detail. Section 4 performs a case study to further

illustrate the use of our approach. Section 5 draws
conclusions and points out our future work.

2. Related Works

Research and continuous re-evaluation of standard
practices have been conducted to study ways of
improving the survivability of critical infrastructures
where errant or malicious computer operations could
result in a catastrophe. However, few of them
demonstrate a non-intrusive approach focusing on
cyber attacks in SCADA systems by integrating domain
specific security knowledge into survivability solutions.

Pollet proposes a Network Rings of Defense model
to provide a layered security strategy for the SCADA
system [4]. In such a structure, developing an
appropriate SCADA security strategy involves analysis
of multiple layers including firewalls, proxy servers,
operating systems, application system layers,
communications, and policy and procedures. Risk
analysis are applied on all these layers and known
vulnerabilities, such as password, key stroke logging,
and Denial of Service (DoS) attack protection, etc [5].

An agent-based system is proposed to monitor the
SCADA system in a distributed way to provide quick
local fault recognition and response [7]. Firewalls [6]
and intrusion detection techniques are also studied to
help repel and localize cyber attacks [8].

Protection-Shell [17], also known as a Safety Kernel
[15,16], is “an independent computer program that
monitors the state of the system to determine when
potentially unsafe system states occur or when
transitions to potentially unsafe system states may occur.
The Safety Kernel is designed to prevent the system
from entering the unsafe state and return it to a known
safe state.” Leveson et al. [20] describe the term “Safety
Kernel” as a technique which focus on centralizing a set
of safety mechanisms. These mechanisms are used to
enforce usage policies that are established in a given
system to ensure system safety. Kevin G. Wika and J.C.
Knight gave an evaluation of the feasibility of the
safety kernel as a software architecture for the
enforcement of safety policies [15].

System Fault-Tree Analysis [17, 26] is a widely used
safety analysis technique and also an important
technology in assessment of the safety-critical systems.
System Fault-Tree Analysis helps to make fault
dependability predictions, and identify root causes of
equipment failures. Although different versions of
software replications on different hardware units are
used to tolerate both hardware and software faults, the
management of these replicas in a distributed

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

2

environment is intertwined with the functional logic
being protected.

Until today, most of research efforts have focused on
applying available general purpose IT security
technologies to SCADA systems. Little effort has been
put on developing SCADA-specific strategies. One of
the major characteristics of SCADA systems is that it
could take a decade or more to renovate the existing
SCADA systems to take full advantage of general IT
security technologies, but on the other side, these
legacy systems still have a considerable amount of
serviceable life remaining [8]. Hence, compensating
and non-intrusive approaches for improving legacy
systems survivability in a cyber environment must be
sought-after.

Exogenous control-driven coordination models, such
as ARC[ren-coord06], ABT [14], LGI [15], ROAD
[16], IWIM [11] and CoLaS [17] isolate coordination
by considering functional entities as black boxes. For
example, in the ARC model, QoS constraints are
mapped into coordination constraints and are enforced
through message manipulations which are transparent
to the underlying computations modeled as
asynchronous message passing systems. The ABT
model and its language Reo [14, 18] extend the IWIM
by treating both computation and coordination
components as composable Abstract Behavior Types
(ABT). Similarly to IWIM, ABT is a two-level control-
driven coordination model where computation and
coordination concerns are achieved in separate and
independent levels. [30]

The coordination transparency inherent in the
exogenous coordination model presents itself as a
possible ramification for retrofitting legacy SCADA
system for survivability in a cyber environment.

3. Retrofitting SCADA Systems through

External Coordination

In this section, we present our exogenous coordination
model for retrofitting legacy SCADA systems with fault
tolerance in a cyber environment.

3.1. An Exogenous Coordination Model

The ARC (Actor, Role, Coordinator) coordination
model is developed to model open distributed systems
with non-functional requirements (or QoS requirements
in general), such as survivability and attack-tolerance
requirements [17].

More specifically, the ARC model has the following
characteristics:

• The Actor model is used to model the concurrent
computational part of a distributed cyber
information system, while an independent
coordination model is developed to address
individual composing entities’ “cooperation”, or
coordination. Further, the QoS requirements in
general, survivability and attack-tolerance
requirements in particular, are achieved through
specific coordination among the asynchronous
entities.

• The concept of a role is introduced into the
coordination model. The role provides an
abstraction for coordinated behaviors that may be
shared by multiple actors and also provides
localized coordination among its players.

• Coordination in our model is divided into inter-role
and intra-role coordination to ensure clearer
separation of responsibilities and reduce the
complexity of individual coordination entities. This
setting further ensures that both the coordination
constraints and coordination activities are
decentralized and distributed among the
coordinators and the roles.

• The survivability and attack-tolerance requirements
are mapped to coordination constraints and are
transparently imposed on actors through message
manipulations carried out by roles and
coordinators.

The ARC model may be conceptualized as the

composition of three layers, with each of the three
components of the model associated with a dedicated
layer, as illustrated in Figure 1. The separation of
concerns is apparent in the relationships involving the
layers. The actor layer is dedicated to functional
behavior and is oblivious to the coordination enacted in
the role and coordinator layers. The roles and
coordinators constitute the coordination layer
responsible for imposing coordination and QoS
constraints among the actors.

The coordinator layer is oblivious to the actor layer
and is dedicated to inter-role coordination. The role
layer bridges the actor layer and the coordinator layer
and may therefore be viewed from two perspectives.
From the perspective of a coordinator, a role enables
the coordination of a set of actors that share the static
description of abstract behavior associated with the role
without requiring the coordinator to have fine-grained
knowledge of the individual actors that play the role.
From the perspective of an actor, a role is an active
coordinator that transparently manipulates the messages
sent and received by the actor. The roles in the role
layer and the coordinators in the coordinator layer are

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

3

active state-based objects, enabling the coordination
policies within an application to adapt over time. While
actors communicate via messages that are subject to
delay, the information required by roles and
coordinators is communicated via atomic events that are
processed atomically by all interested roles and
coordinators.

Figure 1. The ARC Model

Actors

Actors in our ARC model are based on the actor
model in [1]. More specifically, actors are active
objects. They have states and behaviors. The states and
the current behavior of the actors decide how they
process messages (operations).

Roles

Roles serve two purposes. First, roles provide static
abstractions (declarative properties) for functional
behaviors that must be realized by actors. Coordination
based on roles is therefore relatively stable, even
though the underlying actors may be of large quantity
and dynamic. In addition, roles actively coordinate the
actors playing the roles to satisfy fault tolerance
requirements. The intra-role coordination coerced by
roles complements the inter-role coordination enacted
by coordinators.

The declarative criteria in the roles not only abstract
the behaviors of actors, but also present a static
interface to coordinators. Coordinators, therefore, do
not have to directly coordinate actors, but implicit
groups of actor, i.e., roles. Although in cyber
environment, actors are very dynamic, they join or
leave the system frequently; with role abstraction,
coordinators are refrained from such dynamics.

Coordinator

Similar to the roles and actors, coordinators also have
states and are active. They are able to observe events

and make corresponding state adaptations. The
declarative constraint policies are state-based and apply
to roles only. The actors and coordinators are mutually
transparent: though changes on actors or coordinators
may impact on each other, such impacts are only passed
through roles.

3.2. Separating Fault-Tolerance Concerns
from Supervision and Acquisition Logics

To simplify our discussion, we focus on critical
components and their constraints that keep a SCADA
system in safe states.

From a workflow’s perspective, each essential
component in the physical layer has a corresponding
node in the workflow. Each node has input and output
ports for communication with other nodes and stores
the Process Variable (PV) values of the corresponding
device in the physical layer. A PV is a named piece of
data associated with the current status of a process
under control, such as setpoints and parameters. These
values can be retrieved from the existing SCADA
system. As the PV values represent the current device
states in the physical layer, and the control system
mathematical models represent the devices functional
behaviors, the simulations of control commands or
faults on the workflow realistically reflect their impacts
on the real systems.

For a complex device in the physical layer, the
corresponding node in the workflow can be recursively
decomposed into a workflow of simpler nodes each of
which performs relatively simpler activities. In other
words, our workflow is a hierarchal structure [21] with
subworkflows nested within composite nodes.

In addition to reflecting the essential services
provided by the physical layer, the workflow also
contains domain-specific security knowledge. The
security-related knowledge is modeled by meta-nodes
in the workflow. More specifically, depending on the
roles the nodes play, they are distinguished as:
1. Computational nodes. They represent system

functional entities that compose the essential
service parts in the physical layer.

2. Non-functional nodes or meta-nodes. They are not
the nodes that will be involved in simulating real
system behaviors, but are the entities responsible
for monitoring the states of computational nodes
and help detect whether the system states or
behaviors are in potential risks.

Currently, we have defined two types of meta-nodes.
They are the Pattern Checker and the Status Checker,
which carry out attack pattern recognition and node
states monitoring, respectively.

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

4

Attack patterns are derived from the domain specific
security knowledge. In our current study, an attack
pattern is defined as a series of states of a set of
computational nodes. Such states in this specific set of
nodes represent an abnormal system behavior that may
have been caused by a cyber attack. It is formalized by
a conjunctive normal form expressing a conjunction of
statuses, where a status is a specific state in a
computation node. To be more specific, during a
simulation the Pattern Checker is responsible for
monitoring the state of the conjunctive formula, while
the Status Checkers are responsible for monitoring the
state of an individual computation node. If a given
formula turns into “TRUE”, it represents the match of
the pattern.

A simulation in a workflow can be triggered by two
events generated from the SCADA system, i.e. the
CommandIssue event and the FaultOccur event. The
Simulation Manager is responsible for monitoring and
storing the occurrences of events, suspending the
commands and starting/terminating the simulations
accordingly. The next two subsections discuss, in detail,
about the simulation process.

Statically, a workflow contains the mathematical
models of the physical devices and attack patterns
derived from domain knowledge. At run time, the
simulations on the workflow verify the behavior of the
physical system and identify potential faults through
attack pattern matching.

3.3. Attack Detection

As we proposed in [28], through simulation of
workflow combined with matching of attack patterns,
cyber attacks in physical system can be detected.

However, some smart attackers may attack the
system in a subtle way. This kind of attack is an
accumulating process which consists of a series of
commands. Actually, before the abnormal symptoms
appear, the attacks have happened in the system for a
while. So if we take these commands into consideration
individually, all of them are legal. The mechanism
discussed above cannot detect such an attack until the
last control command, (creating the onset of abnormal
symptoms) is sent to the SCADA.

For these subtle attacks,, we will take command
history into account... When commands are entered,
they are tracked and time slices are used to analyze the
commands. With analysis of the evolution of these
slices, we determine if a series of states match a pre-
defined pattern. In the event of a match, warning
messages are issued or some security technology, such
as RSE [27], is invoked to further identify the intention
of the command.

For example, we are concerned with the following
pattern P in a time dimension, which is a fraction of the
whole workflow. We project the pattern P onto the time
dimension, then we get a series of states of pattern P in
history time order, P(t1), P(t2), P(t3), as described in
the following figure:

Pattern P

P(t1) P(t2) P(t3)

Figure 2 Pattern of Bad Behavior

The shaded nodes are those PV values that fall into a

range indicating potential attacks. And we can
formulate a potential attack pattern as follows:

P(t1)[A, PV1]∈R1,
P(t2)[B, PV2]∈R2,
P(t3)[C, PV3]∈R3,
where t1<t2<t3.

Here P(t1)[A, PV1]∈R1 means, in the pattern P of

time t1, the value of PV parameter PV1 in node A fell
in range R1. We can consider such an order as
potentially dangerous.

Besides defining attack patterns, we can also define
acceptable behavior patterns. Considering the above
example, we define the following order-of-actions as
acceptable behavior. We formulate it as follows:

P(t1)[C, PV4]∈R4,
P(t2)[B, PV5]∈R5,
P(t3)[A, PV6]∈R6,
where t1<t2<t3.

P(t1) P(t2) P(t3)

Figure 3 Pattern of good behavior

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

5

An important advantage of defining acceptable
behavior patterns is that the number of acceptable
behavior patterns in a system is limited, while the
number of attack patterns may be unbounded.

3.3. Attack Handling

For the nodes in workflow, we can model them as
actors and group the actors based on functionality. The
actors with same functionality are assigned to the same
group - called a role - in the ARC model. The ARC
model stipulates that, at any time, an actor can only
belong to one role. Therefore, in general, there are two
possible roles an actor can be assigned: a role
representing normal behaviors or one representing
abnormal behaviors.

When the workflow simulation detects that the
system is being attacked (perhaps in a subtle way), the
corresponding actor of the attacked device will transit
from a normal role to an abnormal role. Therefore
under this circumstance, the coordinator will coordinate
the roles to eliminate the actors from abnormal roles.

For example, we can consider such a scenario in
Figure 4. After simulation in workflow, valve V-4
matches a bad behavior pattern for a valve, so it is
transited to abnormal role for valve. When the
coordinator finds the corresponding abnormal role
status for the valve is changed (for example, the number
of abnormal valves > 0), it will coordinate a normal role
for the valve from the abnormal role for valve V-4. For
instance, simple solution would be to select a valve in
normal role to temporarily backup valve V-4, and reset
V-4 so as to make it behave normally, and then V-4 can
return to the normal role for a valve.

Figure 4 Example of valves in ARC model

3.4. Preventing Fault Propagation through
Coordinators

Faulty states in the physical layer are monitored by
SCADA systems. Through workflow analysis,
extensions of the current fault can be identified, which
provides valuable information for the SCADA system
to forecast the potential fault propagations in the
physical system and take necessary actions [28].

When fault propagation is predicted by workflow, we
can apply ARC model to prevent the propagation. In the
following figure, Valves V-5, V-6, V-7, V-8 belong to
the role of valve, while level meter L1 and L2 belong to
the role of level meter. The actions on V-5, V-6, V-7,
and V-8 may change the output of level meter L1 and
L2. For instance, the workflow simulation finds a fault
propagation path from V-5 to Level meter 2. The
coordinator can coordinate role for valve and role for
level meter. Based on the coordination between roles,
the role for valve will select a suitable valve to prevent
the fault propagation.

Figure 5 Example of valves and level meters in ARC

model

4. Case Study

In this section, we use our approach on a simplified
Water Treatment System as a case study. To simplify
our discussion, we omit non-essential services of the
system.

In the water treatment system, there are six valves
(V1~V6) which control the fluid velocity and four
pumps (P1~P4) which are used to pump raw water into
the process system and distribute the purified water to
consumers. In the normal condition only P3 and P4,
called primary pumps, will operate. P1 and P2 are
backups and will be activated only when the primary
pumps are out of order.

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

6

To detect the faults on the pumps, two sensors (S1
and S2) are attached to the primary pumps to monitor
their status. As soon as the status of the primary pump
is abnormal, the backup pumps are activated. We also
have a pressure vessel in which raw water is buffered
and where elementary filtering is applied. Normally,
over pressurization will not occur even when up to
three pumps are activate because the filter can also
release some pressure; however, when all four pumps
are running simultaneously can the vessel be over
pressured. This condition is a rare, abnormal situation.

A pressure release container is attached to the
pressure vessel as a safety mechanism. A sensor (S3) is
used to detect the pressure level in the pressure vessel.
When its sensed pressure value exceeds a threshold, the
valve (V6) for the pressure release container will be
activated to release water from the pressure vessel. We
assume that both sensors are highly reliable. Figure 6
depicts the simplified water treatment system.

 Figure 6 A Simplified Water Treatment System

We first define cyber attack patterns on this system

using our domain-specific security knowledge. This
knowledge allows us to specify that the condition that
can over pressurize the pressure vessel over pressured
is when all four pumps are activated and the pressure
relief valve (V6) simultaneously fails. This low
probability scenario can be seen as an attack pattern.
We can describe such an attack pattern in a conjunctive
normal form as follows:

311 ppC ∧=

422 ppC ∧=

63 vC =

64231321)()(vppppCCCP ∧∧∧∧=∧∧=
Here, P is the Attack Pattern and conditions C1, C2 and
C3 are the output of three Status Checkers. Literals in
the formula are described in the following table.

Based on the above information, we build a

workflow [28]. In this workflow, Status Checkers SC1,
SC2, SC3 and Pattern Checker PC1 are meta-nodes
containing the security knowledge. Other entities are
computation nodes which have counterparts in physical
layer. The connections between computation nodes are
based on both the data flows and control flows in the
physical layer, while those between meta-nodes are
based on the cyber attack patterns. Meanwhile, at any
time an actor will be assigned to a role. For example, in
this case, there are the following roles,
normal/abnormal role for a pump, normal/abnormal role
for a valve, normal/abnormal role for a sensor,
normal/abnormal role for the pressure vessel, and
normal/abnormal role for the container. At the
beginning, all the actors are assigned to normal roles, as
depicted in the following figure:

 Figure 7 Initial Actor Assignment

 The most primitive information comes from the

Process Variables (PVs) stored in individual
computation nodes. Based on this information, the
Status Checkers SC1, SC2, SC3 decide whether
conditions C1, C2, C3 are satisfied. By collecting the
outputs of Status Checkers, the Pattern Checker PC1
can detect whether this pattern is matched. For attack
resistance, workflow simulation anticipates the effect
that control commands will have on essential service
(i.e. those listed in Table 1). For example, assume there
is a new command issued from one of the terminals in

Literal Description (Running Status of)
p1 backup pump P1 is active and normal
p2 backup pump P2 is active and normal
p3 primary pump P3 is active and normal
p4 primary pump P4 is active and normal
v6 valve V6 is abnormal

Table 1. The Description of Literals

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

7

the SCADA system to “Activate Pump1”. This
command will be noticed by the Simulation Manger,
which will trigger a simulation of the command on the
workflow. Assume that in the current system state the
Pump2~4 are all active, and the V6 is closed. In such a
condition, the Pattern Checker will find a matching
pattern such that application of the command on the
real system is prevented. At this time, backup pump P1
and P2 will transit from a normal role to an abnormal
role. When coordination detects the status change to an
abnormal role, it will coordinate all the roles to
eliminate the adverse effect.

For the preventing damage propagation, consider that
the PV value in the Pressure Vessel indicates that the
device is over pressurized. The Simulation Manager
then starts the simulation immediately. We further
assume that by simulation, the first propagated fault is
located as the over pressurization of the filter. The
Simulation Manager then suspends the simulation and
compares this fault with the fault events stored in the
fault event queue by content and time stamp.
Unfortunately, by comparison, it finds that at this
moment the fault has already happened in the real
system. It then continues the simulation and locates the
next propagated fault, which is the overflow of the
Purified Water Container. It repeats the action
described above. Fortunately, the fault is captured
before the error occurs on this device in the actual
system. The simulation is terminated and the fault
propagation information will be reported to the ARC
model. Then coordinator will take measurements to
prevent the propagation (as we discussed in subsection
3.3).

5. Conclusions and Future Work

In this paper we have presented a coordination-based

non-intrusive approach for enhancing the survivability
of critical infrastructure. The advantages of our
approach are twofold: (1) survivability-related
knowledge and a protection scheme are built in the
coordination layer which is external to the SCADA
systems and therefore the disturbance to the underlying
systems is greatly reduced; (2) the “separation of
concerns” principle is truly reflected in our model in
that fault tolerance and survivability concerns are
separated from supervisory and acquisition. Such
separation enables us to accommodate future
requirements that may not even be anticipated today.

References
[1] United States General Accounting Office. Critical

Infrastructure Protection – Challenges and Efforts to

Secure Control Systems. Report to Congressional
Requesters. March 2004.

[2] R. J. Ellison, D. A. Fisher, R.C. Linger, H. F. Lipson, T.
Longstaff, N. R. Mead. Survivable Network Systems: An
Emerging Discipline. Technical Report, CMU/SEI-97-
TR-013. Nov. 1997.

[3] Understanding SCADA Security Vulnerabilities.
Technical Report. Riptech, Inc. 2001.

[4] J. Pollet. Developing a Solid SCADA Security Strategy.
SICON. Houston. TX. 2002.

[5] F. Haji. L. Lindsay. S. Song. Practical Security Strategy
for SCADA Automation Systems and Networks.
CCECE/CCGEI, Saskatoon. May 2005.

[6] C. L. Bowen. T. K. Buennemeyer. R. W. Thomas. Next
Generation SCADA Security: Best Practices and Client
Puzzles. In Proceedings of the IEEE Workshop on
Information Assurance and Security. West Point, NY.
2005.

[7] D. Gamez. S. N. Tehrani. J. Bigham. C. Balducelli. K.
Burbeck. T. Chyssler. Dependable Computing Systems:
Paradigms, Performance Issues, and Applications. Wiley,
Inc. 2000.

[8] InTech Inc. Intrusion Detection and Cybersecurity.
Technical Report. May 2004.

[9] Y. A. Grishin, I. N. Kolosok, E. S. Korkina, L. V. Em.
State Estimation of Electric Power System from New
Technological systems. In Proc. Of Electric Power
Engineering. 1999.

[10] M. Blanke, M. Staroswiecki, N. E. Wu. Concepts and
Methods in Fault-tolerant Control. In Proc. Of the
American Control Conference. Arlington, VA. 2001.

[11] B. Selic. Fault Tolerance Techniques for Distributed
Systems. IBM Technical Report. 2004.

[12] Reverse Social Engineering: Countering the Insider
Attack by Simulating a Human Overseer. Submitted to
SCSC, 2006.

[13] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan
Higgins, Efrat Jaeger, Matthew Jones, Edward A. Lee,
Jing Tao, Yang Zhao, Scientific Workflow Management
and the Kepler System, Concurrency & Computation:
Practice & Experience, 2005.

[14] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S.
Neuendorffer, S. Sachs, Y. Xiong, Taming
Heterogeneity---the Ptolemy Approach, Proceedings of
the IEEE, v.91, No. 2, January 2003.

[15] Wika, K.J., Safety Kernel Enforcement of Software
Safety Policies, Ph.D. dissertation, Department of
Computer Science, University of Virginia,
Charlottesville, VA, 1995.

[16] NATO AC/310 Ad Hoc Working Group on Munition
Related Safety Critical Computing Systems, “Safety
Design Requirements and Guidelines for Munition
Related Safety Critical Computing Systems,” NATO
Standardization Agreement (STANAG) 4404 (Draft),
March 1990.

[17] Knight J. C. Nakano L. G. Software test techniques for
system fault-tree analysis. In Proc. SAFECOMP 97,
1997, pp. 369-380

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

8

[18] Institute of Electrical and Electronics Engineers. IEEE
Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries. New York, NY: 1990.

[19] Paul Brutch, Tasneem Brutch, and Udo Pooch,
“Electronic Quarantine: An Automated Intruder
Response Tool”, Proceedings of the 1998 IEEE
Information Survivability Workshop (ISW’98), October
1998.

[20] Leveson, N. G., T. J. Shimeall, J. L. Stolzy, and J. C.
Thomas, “Design for Safe Software,” in Proceedings
AIAA Space Sciences Meeting, Reno, Nevada, 1983.

[21] S. Bowers and B. Ludäscher. Actor-oriented design of
scientific workflows. In Proc. of the Intl. Conf. on
Conceptual Modeling (ER), 2005.

[22] T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
R. M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: a tool for the composition
and enactment of bioinformatics workflows.
Bioinformatics, 20(17):3045–3054, 2004.

[23] S. Majithia, M. S. Shields, I. J. Taylor, and I. Wang.
Triana: A Graphical Web Service Composition and
Execution Toolkit. In Proc. of the IEEE Intl. Conf.
onWeb Services (ICWS). IEEE Computer Society, 2004.

[24] http://ptolemy.eecs.berkeley.edu
[25] Wayne Labs. Technology Brief (Issue 2, 2004). How

secure is your control system?
http://www.automationnotebook.com/2004_Issue_2/tech
nologybrief_September2004.html

[26] NUREG-0492, Fault Tree Handbook, U.S. Nuclear
Regulatory Commission, January, 1981.

[27] Nancy Leveson. A New Accident Model for
Engineering Safer Systems . Safety Science, Vol. 42, No.
4, April 2004

[28] Kun Xiao, Nianen Chen, Shangping Ren, Kevin Kwiat,
et al. A Workflow-based Non-intrusive Approach for
Enhancing the Survivability of Critical Infrastructures in
Cyber Environment. 3th International Workshop on
Software Engineering for Secure Systems(SESS),
Minneapolis, MN, May 2007

[29] Shangping Ren, Limin Shen, Jeffrey Tsai:
Reconfigurable Coordination Model for Dynamic
Autonomous Real-Time Systems. SUTC (1) 2006: 60-67

[30] Shangping Ren, Yue Yu, Nianen Chen, Kevin Marth,
Pierre-Etienne Poirot, Limin Shen: Actors, Roles and
Coordinators - A Coordination Model for Open
Distributed and Embedded Systems. COORDINATION
2006: 247-265

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

9

