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Abstract 
Most Supervisory Control and Data Acquisition 

(SCADA) systems have been in operation for decades 
and they in general have 24x7 availability requirement, 
hence upgrading or adding new fault tolerant logic into 
the systems to sustain faults caused by cyber attacks 
when these systems evolve into a cyber environment is 
often difficult to achieve. In the proposed approach, an 
external coordination layer is constructed that only 
interfaces with the SCADA systems through events and 
separate from the process under control. The 
coordination layer is a combination of transparent 
management of fault-tolerant schemes of critical 
services of a SCADA system and a model for 
coordinating different critical services when faults 
caused by cyber attack occur in that system. In addition, 
security-related knowledge, such as cyber attack 
patterns and potential fatal states, etc., are also modeled 
and built into the coordination layer. The advantages of 
our approach are twofold: (1) the survivability-related 
knowledge and protection scheme are built in the 
coordination layer which is external to the SCADA 
systems and therefore the disturbance to the underlying 
systems is greatly reduced; (2) “separation of concern” 
principle is truly reflected in our model in that fault-
tolerance, security and survivability concerns are 
separated from supervisory and acquisition. In addition, 
the external coordination model will enable us to 
accommodate future requirements that may not even be 
anticipated today. 

 
 

1. Introduction 
 

The Supervisory Control and Data Acquisition 
(SCADA) system is a specialized software package 
positioned on top of hardware that needs to be 
monitored and controlled. SCADA systems perform 
important roles in many of the nation’s critical 
infrastructures, ranging from electric power generation, 
transmission, and distribution to railroads and mass 

transit [1]. In general, these infrastructures have two 
layers:  

 
1. Physical layer. This layer consists of physical 

units and infrastructures, such as power 
distribution unit, plumbing, wiring, etc. that are 
used to deliver essential services. 

2. Cyber layer. This layer contains computers, 
networks and data gathering sensors that are used 
to monitor and control the physical layer. The 
SCADA system is the main part of this layer. 

Both the SCADA systems and the underlying 
physical systems have strict survivability requirements 
on a twenty-four-hours-a-day, seven-days-a-week 
(24x7) basis. Here survivability means the capability of 
a system to fulfill its mission in a timely manner, even 
in the presence of attacks, failures, or accidents [2].  
Different from fault-tolerant systems which are 
generally engineered to tolerate random natural failures, 
system survivability must also consider unpredictable 
faults which may be caused by intentional attacks.  

SCADA systems are developed to monitor and 
estimate the current operation state [9], collect, 
analyze, and diagnose fault alarms [10], as well as use 
redundant techniques to provide fault tolerance [11] for 
underlying physical systems. However, most existing 
SCADA systems themselves become a point of 
vulnerability when they evolve into a cyber 
environment. The available security technologies 
unfortunately are not targeted for protecting SCADA 
systems, and there are some misconceptions [3] as 
follows: 

 
1. SCADA system resides on a physically separated 

and stand alone network.  
2. Connections between SCADA systems and other 

corporate networks are protected by strong access 
control schemes.  

3. SCADA systems require special knowledge, 
making them difficult for network intruders to 
access and control.  
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4. In the underlying physical layer, all fault alarms are 
assumed to be caused by hardware or software 
malfunctions, and can be treated by common fault 
tolerance techniques.  

 
In recent years, operators of those critical 

infrastructures have come to realize the benefits of 
sharing SCADA information with corporate networks. 
However, the ability to access and control processes 
once isolated to standalone networks has rendered them 
vulnerable to cyber attacks from a variety of sources, 
including hostile governments, terrorist groups, 
disgruntled employees, and other malicious intruders. 
The 2003 incidence where a disgruntled Australia 
engineer released tons of dirty water upon city grounds 
to gain revenge against his supervisor is an example 
[25]. 

Most of national infrastructures, such as power grids, 
water management and supply systems, are built 
decades ago.  These infrastructures have gradually 
evolved into cyber systems and have been enjoying the 
flexibility and productivity that modern technology, 
such as the Internet, has brought.  However, the side 
effects and risks associated with these technologies in 
this very special area are nevertheless not fully 
addressed.   

One of the main challenges is that these systems have 
a 24x7 availability requirement that inhibits the 
‘shutdown and upgrade’ approach that otherwise is an 
effective way to handle emerging concerns.  
Furthermore, such a high availability requirement 
makes these systems highly sensitive to changes.  These 
adversary properties of the SCADA systems hence 
require that any QoS enhancement must be done 
through a non-intrusive way.  In addition, unlike 
traditional fault tolerance measures with which the 
central control and administration are sufficient, 
survivability in a cyber environment must address 
highly distributed, dynamic and unbounded 
environments that lack central control and unified 
policies [29]. 

To overcome this challenge and ensure software 
system dependability in cyber environments, a model 
that captures the characteristics of the system and the 
environment becomes essential. As critical information 
systems emerge from “closed castle” into distributed 
paradigms, the co-operation among distributed elements 
which compose of the larger cyber systems inevitably 
becomes the focus of such systems. 

The rest of the paper is organized as follows: Section 
2 discusses related work. Section 3 presents our 
solution for improving survivability of SCADA systems 
in detail. Section 4 performs a case study to further 

illustrate the use of our approach. Section 5 draws 
conclusions and points out our future work. 
 
2. Related Works  
 

Research and continuous re-evaluation of standard 
practices have been conducted to study ways of 
improving the survivability of critical infrastructures 
where errant or malicious computer operations could 
result in a catastrophe. However, few of them 
demonstrate a non-intrusive approach focusing on 
cyber attacks in SCADA systems by integrating domain 
specific security knowledge into survivability solutions.  

Pollet proposes a Network Rings of Defense model 
to provide a layered security strategy for the SCADA 
system [4]. In such a structure, developing an 
appropriate SCADA security strategy involves analysis 
of multiple layers including firewalls, proxy servers, 
operating systems, application system layers, 
communications, and policy and procedures. Risk 
analysis are applied on all these layers and known 
vulnerabilities, such as password, key stroke logging, 
and Denial of Service (DoS) attack protection, etc [5].  

An agent-based system is proposed to monitor the 
SCADA system in a distributed way to provide quick 
local fault recognition and response [7]. Firewalls [6] 
and intrusion detection techniques are also studied to 
help repel and localize cyber attacks [8].  

Protection-Shell [17], also known as a Safety Kernel 
[15,16], is “an independent computer program that 
monitors the state of the system to determine when 
potentially unsafe system states occur or when 
transitions to potentially unsafe system states may occur. 
The Safety Kernel is designed to prevent the system 
from entering the unsafe state and return it to a known 
safe state.” Leveson et al. [20] describe the term “Safety 
Kernel” as a technique which focus on centralizing a set 
of safety mechanisms. These mechanisms are used to 
enforce usage policies that are established in a given 
system to ensure system safety. Kevin G. Wika and J.C. 
Knight gave an evaluation of the feasibility of the 
safety kernel as a software architecture for the 
enforcement of safety policies [15].  

System Fault-Tree Analysis [17, 26] is a widely used 
safety analysis technique and also an important 
technology in assessment of the safety-critical systems. 
System Fault-Tree Analysis helps to make fault 
dependability predictions, and identify root causes of 
equipment failures.  Although different versions of 
software replications on different hardware units are 
used to tolerate both hardware and software faults, the 
management of these replicas in a distributed 
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environment is intertwined with the functional logic 
being protected.  

Until today, most of research efforts have focused on 
applying available general purpose IT security 
technologies to SCADA systems. Little effort has been 
put on developing SCADA-specific strategies.  One of 
the major characteristics of SCADA systems is that it 
could take a decade or more to renovate the existing 
SCADA systems to take full advantage of general IT 
security technologies, but on the other side, these 
legacy systems still have a considerable amount of 
serviceable life remaining [8]. Hence, compensating 
and non-intrusive approaches for improving legacy 
systems survivability in a cyber environment must be 
sought-after. 

Exogenous control-driven coordination models, such 
as ARC[ren-coord06], ABT [14], LGI [15], ROAD 
[16], IWIM [11] and CoLaS [17] isolate coordination 
by considering functional entities as black boxes. For 
example, in the ARC model, QoS constraints are 
mapped into coordination constraints and are enforced 
through message manipulations which are transparent 
to the underlying computations modeled as 
asynchronous message passing systems.  The ABT 
model and its language Reo [14, 18] extend the IWIM 
by treating both computation and coordination 
components as composable Abstract Behavior Types 
(ABT). Similarly to IWIM, ABT is a two-level control-
driven coordination model where computation and 
coordination concerns are achieved in separate and 
independent levels. [30] 

The coordination transparency inherent in the 
exogenous coordination model presents itself as a 
possible ramification for retrofitting legacy SCADA 
system for survivability in a cyber environment. 
 
3. Retrofitting SCADA Systems through 

External Coordination 
 
In this section, we present our exogenous coordination 
model for retrofitting legacy SCADA systems with fault 
tolerance in a cyber environment. 
 
3.1. An Exogenous Coordination Model  
 

The ARC (Actor, Role, Coordinator) coordination 
model is developed to model open distributed systems 
with non-functional requirements (or QoS requirements 
in general), such as survivability and attack-tolerance 
requirements [17].  

More specifically, the ARC model has the following 
characteristics: 
 

• The Actor model is used to model the concurrent 
computational part of a distributed cyber 
information system, while an independent 
coordination model is developed to address 
individual composing entities’  “cooperation”, or 
coordination. Further, the QoS requirements in 
general, survivability and attack-tolerance 
requirements in particular, are achieved through 
specific coordination among the asynchronous 
entities. 

• The concept of a role is introduced into the 
coordination model. The role provides an 
abstraction for coordinated behaviors that may be 
shared by multiple actors and also provides 
localized coordination among its players. 

• Coordination in our model is divided into inter-role 
and intra-role coordination to ensure clearer 
separation of responsibilities and reduce the 
complexity of individual coordination entities. This 
setting further ensures that both the coordination 
constraints and coordination activities are 
decentralized and distributed among the 
coordinators and the roles.  

• The survivability and attack-tolerance requirements 
are mapped to coordination constraints and are 
transparently imposed on actors through message 
manipulations carried out by roles and 
coordinators. 
 
The ARC model may be conceptualized as the 

composition of three layers, with each of the three 
components of the model associated with a dedicated 
layer, as illustrated in Figure 1. The separation of 
concerns is apparent in the relationships involving the 
layers. The actor layer is dedicated to functional 
behavior and is oblivious to the coordination enacted in 
the role and coordinator layers. The roles and 
coordinators constitute the coordination layer 
responsible for imposing coordination and QoS 
constraints among the actors. 

The coordinator layer is oblivious to the actor layer 
and is dedicated to inter-role coordination. The role 
layer bridges the actor layer and the coordinator layer 
and may therefore be viewed from two perspectives. 
From the perspective of a coordinator, a role enables 
the coordination of a set of actors that share the static 
description of abstract behavior associated with the role 
without requiring the coordinator to have fine-grained 
knowledge of the individual actors that play the role. 
From the perspective of an actor, a role is an active 
coordinator that transparently manipulates the messages 
sent and received by the actor. The roles in the role 
layer and the coordinators in the coordinator layer are 
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active state-based objects, enabling the coordination 
policies within an application to adapt over time. While 
actors communicate via messages that are subject to 
delay, the information required by roles and 
coordinators is communicated via atomic events that are 
processed atomically by all interested roles and 
coordinators.  

 

 
 
Figure 1. The ARC Model 

 
Actors 

Actors in our ARC model are based on the actor 
model in [1]. More specifically, actors are active 
objects. They have states and behaviors. The states and 
the current behavior of the actors decide how they 
process messages (operations).  
 
Roles 

Roles serve two purposes. First, roles provide static 
abstractions (declarative properties) for functional 
behaviors that must be realized by actors. Coordination 
based on roles is therefore relatively stable, even 
though the underlying actors may be of large quantity 
and dynamic. In addition, roles actively coordinate the 
actors playing the roles to satisfy fault tolerance 
requirements. The intra-role coordination coerced by 
roles complements the inter-role coordination enacted 
by coordinators. 

The declarative criteria in the roles not only abstract 
the behaviors of actors, but also present a static 
interface to coordinators. Coordinators, therefore, do 
not have to directly coordinate actors, but implicit 
groups of actor, i.e., roles. Although in cyber 
environment, actors are very dynamic, they join or 
leave the system frequently; with role abstraction, 
coordinators are refrained from such dynamics.  
 
Coordinator 

Similar to the roles and actors, coordinators also have 
states and are active. They are able to observe events 

and make corresponding state adaptations. The 
declarative constraint policies are state-based and apply 
to roles only. The actors and coordinators are mutually 
transparent: though changes on actors or coordinators 
may impact on each other, such impacts are only passed 
through roles. 
 
3.2. Separating Fault-Tolerance Concerns 
from Supervision and Acquisition Logics 
 

To simplify our discussion, we focus on critical 
components and their constraints that keep a SCADA 
system in safe states.   

From a workflow’s perspective, each essential 
component in the physical layer has a corresponding 
node in the workflow. Each node has input and output 
ports for communication with other nodes and stores 
the Process Variable (PV) values of the corresponding 
device in the physical layer. A PV is a named piece of 
data associated with the current status of a process 
under control, such as setpoints and parameters. These 
values can be retrieved from the existing SCADA 
system. As the PV values represent the current device 
states in the physical layer, and the control system 
mathematical models represent the devices functional 
behaviors, the simulations of control commands or 
faults on the workflow realistically reflect their impacts 
on the real systems. 

For a complex device in the physical layer, the 
corresponding node in the workflow can be recursively 
decomposed into a workflow of simpler nodes each of 
which performs relatively simpler activities. In other 
words, our workflow is a hierarchal structure [21] with 
subworkflows nested within composite nodes.  

In addition to reflecting the essential services 
provided by the physical layer, the workflow also 
contains domain-specific security knowledge. The 
security-related knowledge is modeled by meta-nodes 
in the workflow. More specifically, depending on the 
roles the nodes play, they are distinguished as:  
1. Computational nodes. They represent system 

functional entities that compose the essential 
service parts in the physical layer.  

2. Non-functional nodes or meta-nodes. They are not 
the nodes that will be involved in simulating real 
system behaviors, but are the entities responsible 
for monitoring the states of computational nodes 
and help detect whether the system states or 
behaviors are in potential risks.  

Currently, we have defined two types of meta-nodes. 
They are the Pattern Checker and the Status Checker, 
which carry out attack pattern recognition and node 
states monitoring, respectively.  
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Attack patterns are derived from the domain specific 
security knowledge. In our current study, an attack 
pattern is defined as a series of states of a set of 
computational nodes. Such states in this specific set of 
nodes represent an abnormal system behavior that may 
have been caused by a cyber attack. It is formalized by 
a conjunctive normal form expressing a conjunction of 
statuses, where a status is a specific state in a 
computation node. To be more specific, during a 
simulation the Pattern Checker is responsible for 
monitoring the state of the conjunctive formula, while 
the Status Checkers are responsible for monitoring the 
state of an individual computation node. If a given 
formula turns into “TRUE”, it represents the match of 
the pattern. 

A simulation in a workflow can be triggered by two 
events generated from the SCADA system, i.e. the 
CommandIssue event and the FaultOccur event. The 
Simulation Manager is responsible for monitoring and 
storing the occurrences of events, suspending the 
commands and starting/terminating the simulations 
accordingly. The next two subsections discuss, in detail, 
about the simulation process. 

Statically, a workflow contains the mathematical 
models of the physical devices and attack patterns 
derived from domain knowledge. At run time, the 
simulations on the workflow verify the behavior of the 
physical system and identify potential faults through 
attack pattern matching.    

 
3.3. Attack Detection 
 

As we proposed in [28], through simulation of 
workflow combined with matching of attack patterns, 
cyber attacks in physical system can be detected.  

However, some smart attackers may attack the 
system in a subtle way. This kind of attack is an 
accumulating process which consists of a series of 
commands. Actually, before the abnormal symptoms 
appear, the attacks have happened in the system for a 
while. So if we take these commands into consideration 
individually, all of them are legal. The mechanism 
discussed above cannot detect such an attack until the 
last control command, (creating the onset of abnormal 
symptoms) is sent to the SCADA.  

For these subtle attacks,, we will take command 
history into account... When commands are entered, 
they are tracked and time slices are used to analyze the 
commands. With analysis of the evolution of these 
slices, we determine if a series of states match a pre-
defined pattern. In the event of a match, warning 
messages are issued or some security technology, such 
as RSE [27], is invoked to further identify the intention 
of the command.  

For example, we are concerned with the following 
pattern P in a time dimension, which is a fraction of the 
whole workflow. We project the pattern P onto the time 
dimension, then we get a series of states of pattern P in 
history time order, P(t1), P(t2), P(t3), as described in 
the following figure:  

 

 
Pattern P 

        
P(t1)                       P(t2)                    P(t3) 

Figure 2 Pattern of Bad Behavior 
 
The shaded nodes are those PV values that fall into a 

range indicating potential attacks. And we can 
formulate a potential attack pattern as follows: 

 
P(t1)[A, PV1]∈R1, 
P(t2)[B, PV2]∈R2, 
P(t3)[C, PV3]∈R3, 
where t1<t2<t3.  
 
Here P(t1)[A, PV1]∈R1 means, in the pattern P of 

time t1, the value of PV parameter PV1 in node A fell 
in range R1. We can consider such an order as 
potentially dangerous.  

Besides defining attack patterns, we can also define 
acceptable behavior patterns. Considering the above 
example, we define the following order-of-actions as 
acceptable behavior. We formulate it as follows: 

P(t1)[C, PV4]∈R4, 
P(t2)[B, PV5]∈R5, 
P(t3)[A, PV6]∈R6, 
where t1<t2<t3.  
 

        
P(t1)                       P(t2)                    P(t3) 

Figure 3 Pattern of good behavior 
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An important advantage of defining acceptable 
behavior patterns is that the number of acceptable 
behavior patterns in a system is limited, while the 
number of attack patterns may be unbounded. 

 
3.3. Attack Handling 
 

For the nodes in workflow, we can model them as 
actors and group the actors based on functionality.  The 
actors with same functionality are assigned to the same 
group - called a role - in the ARC model. The ARC 
model stipulates that, at any time, an actor can only 
belong to one role. Therefore, in general, there are two 
possible roles an actor can be assigned: a role 
representing normal behaviors or one representing 
abnormal behaviors.  

When the workflow simulation detects that the 
system is being attacked (perhaps in a subtle way), the 
corresponding actor of the attacked device will transit 
from a normal role to an abnormal role. Therefore 
under this circumstance, the coordinator will coordinate 
the roles to eliminate the actors from abnormal roles. 

For example, we can consider such a scenario in 
Figure 4. After simulation in workflow, valve V-4 
matches a bad behavior pattern for a valve, so it is 
transited to abnormal role for valve. When the 
coordinator finds the corresponding abnormal role 
status for the valve is changed (for example, the number 
of abnormal valves > 0), it will coordinate a normal role 
for the valve from the abnormal role for valve V-4.  For 
instance, simple solution would be to select a valve in 
normal role to temporarily backup valve V-4, and reset 
V-4 so as to make it behave normally, and then V-4 can 
return to the normal role for a valve. 

 

 
Figure 4 Example of valves in ARC model  

3.4. Preventing Fault Propagation through 
Coordinators 
 

Faulty states in the physical layer are monitored by 
SCADA systems. Through workflow analysis, 
extensions of the current fault can be identified, which 
provides valuable information for the SCADA system 
to forecast the potential fault propagations in the 
physical system and take necessary actions [28].  

When fault propagation is predicted by workflow, we 
can apply ARC model to prevent the propagation. In the 
following figure, Valves V-5, V-6, V-7, V-8 belong to 
the role of valve, while level meter L1 and L2 belong to 
the role of  level meter. The actions on V-5, V-6, V-7, 
and V-8 may change the output of level meter L1 and 
L2. For instance, the workflow simulation finds a fault 
propagation path from V-5 to Level meter 2. The 
coordinator can coordinate role for valve and role for 
level meter. Based on the coordination between roles, 
the role for valve will select a suitable valve to prevent 
the fault propagation.  

 

 
Figure 5 Example of valves and level meters in ARC 

model  
 

4. Case Study 
 

In this section, we use our approach on a simplified 
Water Treatment System as a case study. To simplify 
our discussion, we omit non-essential services of the 
system.  

In the water treatment system, there are six valves 
(V1~V6) which control the fluid velocity and four 
pumps (P1~P4) which are used to pump raw water into 
the process system and distribute the purified water to 
consumers. In the normal condition only P3 and P4, 
called primary pumps, will operate. P1 and P2 are 
backups and will be activated only when the primary 
pumps are out of order.  

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

6



 

To detect the faults on the pumps, two sensors (S1 
and S2) are attached to the primary pumps to monitor 
their status. As soon as the status of the primary pump 
is abnormal, the backup pumps are activated. We also 
have a pressure vessel in which raw water is buffered 
and where elementary filtering is applied. Normally, 
over pressurization will not occur even when up to 
three pumps are activate because the filter can also 
release some pressure; however, when all four pumps 
are running simultaneously can the vessel be over 
pressured. This condition is a rare, abnormal situation.  

A pressure release container is attached to the 
pressure vessel as a safety mechanism. A sensor (S3) is 
used to detect the pressure level in the pressure vessel. 
When its sensed pressure value exceeds a threshold, the 
valve (V6) for the pressure release container will be 
activated to release water from the pressure vessel. We 
assume that both sensors are highly reliable. Figure 6 
depicts the simplified water treatment system.  

 

 
 Figure 6 A Simplified Water Treatment System 
 
We first define cyber attack patterns on this system 

using our domain-specific security knowledge. This 
knowledge allows us to specify that the condition that 
can over pressurize the  pressure vessel over pressured 
is when all four pumps are activated and the pressure 
relief valve (V6) simultaneously  fails. This low 
probability scenario can be seen as an attack pattern. 
We can describe such an attack pattern in a conjunctive 
normal form as follows: 

311 ppC ∧=  

422 ppC ∧=  

63 vC =  

64231321 )()( vppppCCCP ∧∧∧∧=∧∧=
Here, P is the Attack Pattern and conditions C1, C2 and 
C3 are the output of three Status Checkers. Literals in 
the formula are described in the following table.  
 
 

 
 
 
 
 

 
 
 
 
Based on the above information, we build a 

workflow [28]. In this workflow, Status Checkers SC1, 
SC2, SC3 and Pattern Checker PC1 are meta-nodes 
containing the security knowledge. Other entities are 
computation nodes which have counterparts in physical 
layer. The connections between computation nodes are 
based on both the data flows and control flows in the 
physical layer, while those between meta-nodes are 
based on the cyber attack patterns. Meanwhile, at any 
time an actor will be assigned to a role. For example, in 
this case, there are the following roles, 
normal/abnormal role for a pump, normal/abnormal role 
for a valve, normal/abnormal role for a sensor, 
normal/abnormal role for the pressure vessel, and 
normal/abnormal role for the container. At the 
beginning, all the actors are assigned to normal roles, as 
depicted in the following figure: 

 

 Figure 7 Initial Actor Assignment 
 
 The most primitive information comes from the 

Process Variables (PVs) stored in individual 
computation nodes. Based on this information, the 
Status Checkers SC1, SC2, SC3 decide whether 
conditions C1, C2, C3 are satisfied. By collecting the 
outputs of Status Checkers, the Pattern Checker PC1 
can detect whether this pattern is matched. For attack 
resistance, workflow simulation anticipates the effect 
that control commands will have on essential service 
(i.e. those listed in Table 1). For example, assume there 
is a new command issued from one of the terminals in 

Literal Description (Running Status of) 
p1 backup pump P1 is active and normal 
p2 backup pump P2 is active and normal 
p3 primary pump P3 is active and normal 
p4 primary pump P4 is active and normal 
v6 valve V6 is abnormal 

 
Table 1. The Description of Literals
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the SCADA system to “Activate Pump1”. This 
command will be noticed by the Simulation Manger, 
which will trigger a simulation of the command on the 
workflow. Assume that in the current system state the 
Pump2~4 are all active, and the V6 is closed. In such a 
condition, the Pattern Checker will find a matching 
pattern such that application of the command on the 
real system is prevented.  At this time, backup pump P1 
and P2 will transit from a normal role to an abnormal 
role. When coordination detects the status change to an 
abnormal role, it will coordinate all the roles to 
eliminate the adverse effect. 

For the preventing damage propagation, consider that 
the PV value in the Pressure Vessel indicates that the 
device is over pressurized. The Simulation Manager 
then starts the simulation immediately. We further 
assume that by simulation, the first propagated fault is 
located as the over pressurization of the filter. The 
Simulation Manager then suspends the simulation and 
compares this fault with the fault events stored in the 
fault event queue by content and time stamp. 
Unfortunately, by comparison, it finds that at this 
moment the fault has already happened in the real 
system. It then continues the simulation and locates the 
next propagated fault, which is the overflow of the 
Purified Water Container. It repeats the action 
described above. Fortunately, the fault is captured 
before the error occurs on this device in the actual 
system. The simulation is terminated and the fault 
propagation information will be reported to the ARC 
model. Then coordinator will take measurements to 
prevent the propagation (as we discussed in subsection 
3.3). 

 
5. Conclusions and Future Work 

 
In this paper we have presented a coordination-based 

non-intrusive approach for enhancing the survivability 
of critical infrastructure.  The advantages of our 
approach are twofold: (1) survivability-related 
knowledge and a protection scheme are built in the 
coordination layer which is external to the SCADA 
systems and therefore the disturbance to the underlying 
systems is greatly reduced; (2) the “separation of 
concerns” principle is truly reflected in our model in 
that fault tolerance and survivability concerns are 
separated from supervisory and acquisition. Such 
separation enables us to accommodate future 
requirements that may not even be anticipated today.  
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