The Community for Technology Leaders
2014 47th Hawaii International Conference on System Sciences (2007)
Big Island, Hawaii
Jan. 3, 2007 to Jan. 6, 2007
ISSN: 1530-1605
ISBN: 0-7695-2755-8
pp: 48a
Mark O. Afolabi , Binghamton University State University of New York
Olatoyosi Olude , Binghamton University State University of New York
ABSTRACT
A challenging and daunting task for financial investors is determining stock market timing-when to buy, sell and the future price of a stock. This challenge is due to the complexity of the stock market. New methods have emerged that increase the accuracy of stock prediction. Examples of these methods are Fuzzy logic, Neural Network and hybridized methods such as hybrid Kohonen Self Organizing Map (SOM), Adaptive Neuro-Fuzzy Inference System (ANFIS) etc. This paper presents a number of methods used to predict the stock price of the day. These methods are Backpropagation, Kohonen SOM, and a hybrid Kohonen SOM. The results show that the difference in error of the hybrid Kohonen SOM is significantly reduced compared to the other methods used. Hence, the results suggest that the hybrid Kohonen SOM is a better predictor compared to Kohonen SOM and Backpropagation.
INDEX TERMS
null
CITATION
Mark O. Afolabi, Olatoyosi Olude, "Predicting Stock Prices Using a Hybrid Kohonen Self Organizing Map (SOM)", 2014 47th Hawaii International Conference on System Sciences, vol. 00, no. , pp. 48a, 2007, doi:10.1109/HICSS.2007.441
112 ms
(Ver )