Introduction
Information Retrieval algorithms support the computerized search of large document collections (millions of documents) to retrieve small subsets of documents relevant to a user's information need. Such algorithms are the basis for internet search engines as well as digital library catalogues. In the past few years applications areas of information retrieval methods have included question-answering and text categorization. For HICSS-36, three papers were selected for inclusion into this minitrack, covering three different areas in information retrieval: natural language processing as an essential element of accurate search, the use of bilingual dictionaries in cross-language information retrieval and methods for evaluating algorithm performance under conditions of statistical uncertainty. These papers provide a useful cross-section which indicate the breadth of the field.

Papers
The paper Subword-Based Text Retrieval investigates the contribution of morphology to information retrieval, with particular attention to morphological components of compound word expressions (commonly found in medical terminology of English, and in the German language in general). Their paper presents experimental evidence of the utility of various morphological approaches to dealing with compound words.

The paper The Effect of Bilingual Term List Size on Dictionary-Based Cross-Language Information Retrieval looks into retrieval performance and its dependence upon adequately sized bi-lingual dictionary term lists for translating queries across the language barrier. Their tests show that while term list size is important, certain crucial types of terms, named entities (persons, places, companies, etc.) are the major failing of many bilingual dictionaries. In addition, for English-German retrieval, missing words from term lists have the effect of making decompounding of complex German words impossible to achieve.

The final paper A General Method for Statistical Performance Evaluation presents a novel method for statistical performance evaluation of information retrieval ranking and weighting methods. The statistical metrics for performance are compared by a series of simulations. Then a series of experiments are carried out by sending queries to five major internet search engines and evaluating performance for four major ranking methods.