Computer Supported Collaborative Learning requiring Immersive Presence (CSCLIP) Minitrack Introduction

CoChairs:
Nicholas C. Romano, Jr., Joyce Lucca, Ramesh Sharda
Management Science and Information Systems
College of Business
Oklahoma State University
Phone: (918) 594-8506 Fax (918) 594-8281
Nicholas-Romano@MSTM.OKSTATE.EDU, ljoyce@okstate.edu, sharda@mstm.okstate.edu

This minitrack addresses Computer Supported Collaborative Learning Requiring Immersive Presence (CSCLIP). Immersive Presence (IP) may be characterized in at least two ways. First, it allows same-time different-place (STDP) interaction among students, instructors, equipment and Information Technology (IT). Second, it implies “sense of presence” that is typical in lab or training environments. The right mix of learning theory, group dynamics, IT, and high bandwidth will enable a new level of interactivity to support CSCLIP.

Joyce Lucca, Nicholas C. Romano, Jr., and Ramesh Sharda in their paper An Overview of Systems Enabling Computer Supported Collaborative Learning requiring Immersive Presence (CSCLIP) introduce this emerging research area by considering three types of computer-based systems employed individually and in pairs to achieve learning objectives: Computer-Supported Learning Systems, Collaborative Systems, and Immersive Presence Systems. They report on educational uses of the intersection of these three systems in combination.

Cindy E. Hmelo-Silver in her paper Facilitating Collaborative Knowledge Construction describes a detailed analysis of a student-centered problem-based learning group. The focus of her analysis is to understand the goals and strategies of an expert facilitator in support of a group learning process by examining the questions and statements that the students and facilitators generated as they traversed a complex conceptual space and inferring the facilitator’s goals and strategies and how these changed over time.

Victor Kaptelinin and Ulf Hedestig in their paper Facilitator’s Invisible Expertise and Supra-situational Activities in a Telelearning Environment report on a study of a videoconference-based environment in decentralized education and factors determining the success of teaching and learning in the environment. The focus of their paper is on the role of a person having the formal responsibilities of a “technician” in preventing potential obstacles to immersion and collaboration in the setting.

Lin Chai in her paper To Have or Have Not An Examination of Feedback, Learner Control and Knowledge Type in Online Learning investigates a complex set of interrelated factors in the relatively new sphere of online learning in an experimental setting. Her results indicate that feedback and learner control have a significant interaction effect for declarative knowledge acquisition.

Martin Beer, Frances Slack and Gillian Armitt in their paper Community Building and Virtual Teamwork in an Online Learning Environment describe OTIS, an online Internet School for occupational therapists, in which students from four European countries were encouraged to work collaboratively through problem based learning by interacting with each other in a virtual semi-immersive environment.

Timothy R. Hill in his paper Leveraging Mobile Technology for m-Learning:3rd Generation Threaded Discussions discusses the promises that emerging mobile technologies for educational institutions seeking to extend the learning experience to an increasingly nomadic and time-challenged student community, especially at urban campuses where both faculty and students typically commute to school and struggle to multi-processes work, study and family time and location demands.