
Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

Experiences with Collaborative Applications that Support Distributed Modeling

James Lee
jlee@cmi.arizona.edu

Conan Albrecht
conan@cmi.arizona.edu

Jay F. Nunamaker Jr.
nunamaker@cmi.arizona.edu

Center for the Management of Information, University of Arizona

Abstract
 Awareness of the need for business analysis has grown
faster than the evolution of tools to support collaborative
development of business analysis models. Involvement of
key personnel is important for model accuracy and buy-
in, which is not trivial, especially if they are distributed
geographically. Traditionally, models have been
developed by individuals or small groups because of the
complexity of collaborative modeling.
 Researchers at the Center for the Management of
Information (CMI) at the University of Arizona have
created specialized electronic meeting systems tools and
methods to support several types of collaborative business
models. This paper discusses the creation of a
collaborative server created to support the development
of distributed, collaborative electronic meeting systems
tools. The server and collaborative tools serve as “proof-
of-concept” that web-based tools can support
collaborative meeting processes in face-to-face and
distributed settings. Flexibility integrated into the tools
and the server enables them to support a wide range of
tasks.

1. Introduction

 Researchers in the Center for the Management of
Information (CMI) at the University of Arizona have
worked for the past several years creating process-specific
electronic meeting systems (EMS) tools and methods to
support the development of various types of business
models. These models include IDEF0 activity models
and enterprise data models [1, 3, 5, 6, 12]. The tools and
methods were designed to effectively involve users in the
development of business models and were geared towards
face-to-face settings. With increasing globalization and
the use of virtual teams, the need to support both
synchronous and asynchronous distributed teams has
grown significantly.
 The EMS modeling tools are an important part of the
Collaborative Software Engineering Methodology
(CSEM) [2]. Although there are general-purpose
collaborative tools and special-purpose single-user

0-7695-0981-9/01 $
modeling tools available, there are not any tools
specifically designed to support collaborative, parallel
user development of models. This paper focuses on the
creation of the CMI collaborative server, the
Collaborative Distributed Scenario and Process Analyzer
(ColD SPA, hereinafter referred to as SPA) tool, and
GroupWriter (GW) which were developed to support this
aspect of CSEM. This is only a small part of the research
to date on CSEM and collaborative tools. Other papers
discuss aspects of CSEM and collaborative tool
development not detailed here [2, 7, 8, 9, 13].

2. Background

 The CSEM was developed after years of experience
using EMS technology to support various requirements
gathering activities. It combines advanced group
collaboration techniques with the best elements of
systematic re-use, data integration, and rapid prototyping
methods in order to produce integrated and interoperable
systems. It is divided into four phases: Planning,
Requirements, Design, and Implementation. The
methodology focuses on user involvement throughout the
software engineering process and collaborative tools, both
general purpose and specialized, are used to support this
involvement. CSEM includes a detailed description of
each step in the process including roles and
responsibilities of project team members. Collaborative
meeting tools played a key role in the vision of CSEM
and additional tools have been developed since its
inception to support various phases of the methodology.
For more information on CSEM, see [2, 10].
 The development of collaborative meeting tools has
been a part of CMI research for more than fifteen years
[4, 12, 15, 16, 17]. These tools have evolved over the
years from DOS-based, to MS Windows-based, and
currently to Java-based, distributed, collaborative tools.

3. CMI Collaborative Server

 The CMI Collaborative Server is a second-generation
server designed to support the Rapid Application
Development (RAD) of collaborative applications. The
10.00 (c) 2001 IEEE 1

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
first-generation server, a Windows/Delphi-based thin
server, supported the initial, distributed applications built
within CMI. However, application needs soon outpaced
the capabilities of the server, and the need for a new
server design became apparent. The second-generation
server has been in development since Summer 1999 and
is currently deployed as version 3.50.
 This section outlines the design and implementation of
the new server. A design overview is first presented,
followed by specific implementation details.

3.1. Design overview

 The design of the server involved the following goals:
abstracted collaborative behavior; thin, common client;
distributed; real-time; efficient; portable; scalable;
standards-based; rapid application development;
robust. These goals are described in the following
paragraphs.

3.1.1. Abstracted collaborative behavior. The server
contains common collaborative behavior found in most
applications. A review of historical collaborative
applications developed within CSEM and abroad
provided a good foundation of functionality that most
applications need. Examples of these functions are
security, replication, and others. These behaviors were
abstracted into a framework and then coded directly into
the server.

3.1.2. Thin client. The initial cost of Java clients is the
Java Virtual Machine (JVM), which is currently a 5MB
download from java.sun.com. Since full-featured client
are required for CSEM applications, there is no way
around this dependence upon the JVM. However, all
framework code beyond the JVM is thin, light, and small.
This allows downloaded applets to start very quickly,
even on slow modem connections. The entire client
application download is less than 100K.

A common client. All applications written to the server
framework run within a common client. This common
client takes care of the initial bootstrapping process,
which includes connecting to the server, establishing
event queuing, logging in and sessioning, and application
invocation. The client also provides a standard frame that
application panels are placed into.
 A further advantage of the common client is increased
potential for caching. Since most browsers cache files
downloaded from the Internet, once a user has
downloaded the common interfaces and classes, he or she
can run different framework-based applications without
needing to download the common client again.

0-7695-0981-9/01 $1
Multiple client environments. Since framework
applications are written to an interface which allows them
to be placed into a common client, multiple client
environments have been programmed. Three
environments are currently supported. First, applet-based
programs can be hosted by web browsers. The applet
performs special functions to allow applets to work
through RMI. Second, application-based programs allow
for local installations of CSEM applications. Programs
can be run as applets or applications with no change in
client code. Finally, servlet-based programs use pure
HTML pages and forms via the common gateway
interface and client web browsers. Minimal client code
changes are required for servlet-based applications.

User-interface driven. Since the server provides access
to data as well as common collaborative behaviors, client
programmers focus almost entirely on user interfaces. The
clients download interface classes upon demand; if a user
does not open certain screens or dialogs of the
application, these class definitions are not downloaded.
 In addition, all client programs are based upon Java's
Swing architecture. Swing provides standard UI
components such as lists, text fields, tables, and graphics.
Since javax.swing classes are included in the JVM
package, they are already on client machines and do not
need to be downloaded (see the use of the plug-in below).

3.1.3. Distributed. The new server supports fully-
distributed applications. For purposes of this framework,
distributed applications are programs that run off of
remote computers with no required local installation. In
addition, data are kept on the server or set of servers and
not on client machines. The applications are accessible
from any client computer on the Internet, providing they
have firewall and security access to the applications.

3.1.4. Real-Time. Applications built upon the
framework are multi-user applications. They are real-time
in their ability to replicate data very quickly to all
connected clients. Therefore, when one client modifies
data on the server, all other clients accessing that same
data immediately see the changes on their screens. While
data are real-time, users are in control of their applications
(the messaging system that manages real-time behavior is
described later in this paper).

Locking. Since multiple users access the s ame data at the
same time, the server provides a locking system. Locking
is automated as much as possible, but in some cases,
applications must specifically ask the server for explicit
locks. However, the actual locking system is always
controlled and managed by the server.

0.00 (c) 2001 IEEE 2

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Security. The server (either through the CMI server, the
firewall, the web server, or the EJB server) manages
access to data and applications. Clients do not make
decisions on security; rather, decisions must be made at
the server level. Having the server manage security helps
prevent rogue client programs from undermining the
security system.
 Clients are assigned session tokens upon login that
contain their rights. These tokens are good for a period of
time (usually 30 minutes) and expire when clients go
dormant. All server access is carried out through these
tokens, and the server may refuse access based upon the
token rights. Sessioning also prevents usernames and
passwords from crossing the network unnecessarily.

3.1.5. Portable. The server is programmed in Java for
portability reasons. It has been run successfully on
Windows, Mac, and Linux platforms. No proprietary ties
to any EJB server have been made. While many EJB
servers provide proprietary user objects and messaging
systems, the framework includes custom services where
the EJB standard does not provide. The inclusion of
custom objects helps ensure the framework is portable to
different EJB servers.
 The server is also portable in its data persistence
scheme. Since the server is the only portal to data,
different data storage routines (relational databases, OO
databases, flat file schemes, etc.) Can be plugged into the
server with no change in client code. Client programmers
see data only as a set of objects.

3.1.6. Efficient. While the server was developed as a
prototype, every effort has been made to promote
scalability and quick replication. Several caching
techniques have been implemented into the data and
messaging system, and others are planned for future
implementation. These caches do not affect the overall
server or client interface, but integrate seamlessly whether
or not the cache is enabled.
 In addition, replication only takes place between
clients viewing the same data. Data updates for parts of
the application that are not currently visible (other than
for caching) are unnecessary. Therefore, the server keeps
track of the location of users and what data they are
interested in so it can determine which events to send.
 Finally, all processing that can be done by client
machines is done there; the server manages only core
collaborative functions.

3.1.7. Scalable. The server currently supports small
groups of clients (1-50 machines). It is currently hosted
on an open source EJB server.
 Server code has been written to support n-tiered server
architectures. Client machines view their server as the
only worldwide server for their data. However, the server

0-7695-0981-9/01 $
might in actuality be one in a large set of n-tiered servers,
either in hierarchical or workgroup fashion.

3.1.8. Standards -based. The framework is based upon
industry standards, adhering to no proprietary code or
interfaces. Specifically, the server and client code is
written to Java's Enterprise Javabeans (EJB) standard.
EJB provides a standards set of interfaces with which
enterprise data can be accessed. Currently, over 30
companies and open source projects are writing products
to meet this standard.
 In addition, Java's Remote Method Invocation (RMI)
is used for client/server communication. RMI is used by
the EJB standard and works over CORBA's IIOP. RMI
provides schemes for working within firewall situations
and allows several different on-the-wire protocols. The
common client attempts to connect with three different
schemes when it encounters firewa ll situations, with the
final scheme being a “lowest-common-denominator”
HTTP-only technique.
 Finally, the client-side use of Java's plug-in helps
ensure application code is portable across browsers and
operating systems.

3.1.9. Rapid Application Development. CMI is a
research organization that builds new and innovative
prototypes. The nature of this type of development does
not always allow for top-down, traditional application
development. The needs and requirements of new
application are often not known until after the first or
second release. (In retrospect, these assumptions are also
becoming more and more common in the general
computer world.) Therefore, programmers should be
capable of programming applications very quickly within
the framework. Preliminary data show that once
programmers understand the framework API, they can
quickly develop robust and efficient collaborative
applications.

3.2. The property hierarchy

 Properties are the heart of the CMI Collaborative
Server. The framework decomp oses objects at least one
level further than traditional object-oriented (OO)
programming. Properties are then assigned to each atomic
piece of data; these Properties control the life, client
access, persistence, and security of the data. Properties
are arranged in the hierarchical fashion typical to OO
techniques. The following diagram depicts traditional OO
and the framework Properties:
 Figure 1 shows a simple user class modeled in
traditional OO programming. The main structure is a user
object, which contains a name object (recursively holding
Strings for first, middle, and last names), e-mail address,
and phone number. The user object holds references to
10.00 (c) 2001 IEEE 3

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
each of the sub-objects it contains, and it manages their
existence in memory. Object-oriented programming
typically includes all code required to manage these
objects.
 The framework diagram on the right is a modified
version of the previous one. It is intended to show the
modifications the architecture makes on traditional OO
programming. The data values of First Name, Middle
Name, Last Name, E-Mail, and Phone Number still exist.

 Number
Phone

Address
E-Mail

Name
Last

Name
Middle

Name
First

Name

Object
User

 Number
Phone

Address
E-Mail

Name
Last

Name
Middle

Name
First

(Phone)
Property

(Email)
Property

(Last)
Property

(Middle)
Property

(First)
Property

(Name)
Property

(User)
Property Property names are

in parenthesis;
Property values are
the arrow pointers

Traditional OO CMI Framework

Figure 1. Traditional OO properties and OO properties
within the CMI Framework

However, no governing user object is managing them.
Rather, each value has a Property object that manages it.
Thus, all management, references, and pointers are moved
to the property structures and away from the actual data
objects.
 The top-level property in the diagram above still
represents the "User" object in theory. However, no actual
data is associated at this level, so it does not point to a
data object (although it could in other instances). It is
assumed that this top-level property is managed by other,
parent properties above it. The entire structure finally
ends in a top-level, root property that manages the data of
an entire application.
 The values managed by the Properties are atomic.
While this is the normal case, these values could also be
more complex structures, such as arrays, lists, and even
large graphs. The granularity of the property structure is
governed by each specific application and circumstance.
 Each property governs a single piece of data (even that
data might be a complex structure). It manages the
following on its data:

0-7695-0981-9/01 $1
• Security Access: All access to the data behind a
property is governed by an access control list in
each Property.

• Messaging : Property objects are basic collaborative
objects. All changes to their data are automatically
routed to all interested clients.

• Viewing: Data within properties can be viewed in
any number of ways. A Property manages the view
access to its data.

• Locking: Properties can be locked at nine levels of
access. This locking gives a client exclusive access
to the data of the property.

• Persistence: Properties are responsible for saving
their data to the database.

 Parent and child references kept within each property
maintain the property hierarchy. Child properties can be
referenced with any number of indices, such as name
index, sequential index, etc. The data behind the
properties does not need to keep references to its parent or
child data because this information is kept at the property
level.

3.3. Client viewers

 Client applications are mainly composed of Viewers
that live within the common client framework. These
Viewers are based upon the Model-View-Controller
(MVC) architecture. MVC was first conceived at Xerox
PARC in the late 1970's. It was often used in the
Smalltalk language, but never became popular until the
middle 1990's. Part of its recent popularity may be due to
its adoption by the Java language architects, who based
Java's Swing foundation classes on MVC.
 In its simplest form, MVC separates the data (the
Model) from the user interface (the View) and allows
multiple Views to act upon the same Model. The
Controller object manages the interaction and updates
between the Model and View. Several forms of MVC are
found in the literature, from heavyweight local
implementations to lightweight distributed
implementations.
 A major difference between traditional MVC is that
the framework distributes the objects across JVMs. Most
MVC applications target local (within process)
applications and, consequently, utilize heavy-bandwidth
event systems. The framework's MVC implementation is
targeted at efficient network usage.
 Another difference is that the Properties (Model)
normally drive which Viewers (View/Controller) are
used. This is opposite of MVC where different Views are
windows into non-active data. However, since each
Property controls a piece of data, it also dictates the
default viewer for that data. This allows applications to
0.00 (c) 2001 IEEE 4

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
deal abstractly with all kinds of Properties without being
tied to certain Viewers.

3.4. Messaging system

 The framework includes a messaging system, based
upon a modified publish/subscribe model, written
specifically for this server. This event system provides the
foundation for client/server communication and the
replication abilities of the server

3.4.1. An Overview of Messaging. Messaging refers to
a system of communication between computers, usually
on the application level. Messaging is a foundation piece
of any collaborative application, since multiple clients
need to share data and screen views. Messaging
techniques have existed from the early days of computers,
and have evolved throughout their history. The following
list categorizes different messaging models (these items
are in no way mutually exclusive of each other):

Direct connection. A direct connection is the most basic
method of communication. It typically streams bytes
socket to socket or utilizes Remote Procedure Call (RPC)
to directly call routines on a target machine. It does not
use events but sends more basic data structures such as
strings or integers. In the instance of byte streams, the
source and target machines open a socket connection and
send bytes to each other. Case or switch statements on
each end parse control characters from the byte streams to
determine the specific data and command being sent.
Direct connection messaging is synchronous in nature; it
requires both the source and target machines to be
connected in real-time.
 RPC allows source machines to call procedures or
methods on target machines. While this is more abstracted
than byte streams, the end result is much the same: target
procedures are called with basic data structures. RPC has
been a very popular method of communication for several
decades in many different application spaces.

Shared database. The advent of database systems,
particularly relational database systems, provided a more
automatic method of collaborative data management.
Most database management systems (DBMS) provide
multi-user support, two-phase locking, security, and other
mechanisms common to collaborative systems. These
features are even found in desktop DBMS's such as
Microsoft Access and Xbase systems. Since all client
applications connect to the same data source, changes to
the data are automatically reflected throughout the
system.
 This method of collaboration has proved very effective
for many applications. Shared databases are used in most
corporations today for data access throughout the

0-7695-0981-9/01 $1
organization. However, the actual update mechanism
involved is dependent upon each database. There is no
way to ensure that the system uses direct connections,
polling, or other mechanisms.

Polling. Polling shifts messaging responsibilities to
clients. Client machines are responsible for querying the
server at specified intervals for changes to the data. This
method does not result in true real-time collaboration
since data is only refreshed at a periodic rate. However,
with sufficiently short refresh period, real-time
collaboration can be approximated. For example,
GroupSystems.com's GroupSystems suite of applications
refreshes every few seconds. As another example, HTTP
(the protocol of the World Wide Web) is a
request/response protocol, which requires a polling
scheme since only clients can initiate data transfer. While
methods to get around this limitation exist, the protocol
remains based in polling schemes.
 Polling has several disadvantages. First, since clients
must initiate data refresh, applications cannot ensure the
entire network of clients is up-to-date. This may result in
data inconsistency and update anomalies. Second, clients
poll at specified periods whether or not the data on the
server has been updated. Therefore, this method usually
results in unnecessary bandwidth usage and server
processing. While this may not be an issue on a local area
network, distributed collaborative applications often
suffer from polling.

Shared events. Shared Events provide a mechanism to
quickly turn an event-based system into a multi-user,
event-based system. In this scheme, events that are
normally relayed to only one client are copied and passed
to all clients. Therefore, all clients receive the same data
changes and stay in sync with each other. In addition, if
UI events are also shared, shared events allow a
facilitator-type client to control the user interfaces of all
other clients. This method allows for the rapid
development of collaborative systems. However, since all
clients share all events, the system is not always efficient
or optimized.
 A system that uses shared events is the NCSA's
Habanero environment. “The Habanero framework or
API is designed to give developers the tools they need to
create collaborative Java applications. The framework
provides the necessary methods that make it possible to
create or transition existing applications and applets into
collaborative applications. Using the Habanero Wizard,
developers can easily convert applets by selecting the
objects and events they want to share. The Wizard then
rewrites the code to take advantage of the Habanero API.”
[14]

0.00 (c) 2001 IEEE 5

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Publish/Subscribe. This scheme is a more advanced
version of shared events. It requires that messages are
passed within event objects, which usually subclass an
Event super-object. The event system contains routing
information that pass event objects from event queues to
interested targets. The source usually knows nothing
about the targets __ it simply posts events to a specified
event queue. Clients register themselves as listeners to
different queues. When events are posted to each queue,
copies are passed to each listening object. The listeners
are then responsible for unwrapping the Event object and
dealing with the information as they see fit.
 Message queues allow for asynchronous
communication. Source applications simply post their
events and continue with their execution with little delay.
The event queues are then responsible for the method,
timing, and route of the events.
 While the publish/subscribe methodology has existed
for many years, it has recently gained increased
popularity. This is in part due to the adoption of message
queuing by the Object Management Group , Microsoft ,
the Java community, and many others. Most current
middleware products support some type of
publish/subscribe scenario.

3.4.2. Messaging Transparency. The event system
should be as transparent as possible. Application
programmers should need to know very little about the
messaging taking place. They should not need to
subscribe or unsubscribe from event queues if the
framework can do this automatically. Encapsulating the
messaging system within the framework supports the
RAD goals of the overall framework.

3.4.3. System description. The CMI messaging system
is based upon a modified publish/subscribe scheme. When
a server or client initializes, it creates a local event queue
and publishes this object in the JNDI. The server or client
also starts a thread pool to manage the items in its event
pool. One thread is responsible for event forwarding in
the routing system; the remaining threads are assigned to
events at their destinations.
 The framework allows for n-tiered event queues. The
source object creates an array of GUIDs describing the
route the event should go through. The event queues push
the event along this route, popping a route ID off the array
at each stop. When only one ID remains, the event queue
assumes it is the ID of the destination object. It then
forwards the event to this object within the same JVM as
the last event queue, where the event is processed.

Routing and subscription. The messaging system uses
an abstracted routing system. Routes define the series of
stops between server and eventual client. Clients calculate

0-7695-0981-9/01 $1
their routes to their server when they log on and pass this
route to all Properties to which they connect.
 Two potential errors occur when events are propagated
through their routes. A null reference is encountered
because a) the Viewer no longer exists, or b) the client
disconnected during an earlier server session and the
server has since restarted, resulting in a null remote
reference (since the local stub no longer exists). Second, a
connection error could occur because the client
disconnected during this server session. In this case the
local stub still exists but has lost its socket connection.
 Either of these error signals an invalid route: the
publishing Property needs to be notified to remove this
route from its list of event listeners. Since the remote
connections link only JVM to JVM, the event must be
propagated backwards through its route to its origin. This
is accomplished by setting a rollback flag on the event.
When it arrives at the source JVM, the Property is
notified to remove the route. Using this mechanism,
listener lists stay clean and current. Viewers also
unsubscribe automatically during a clean logoff, which is
described in the next section.
 One reason we describe the framework's messaging
system as a modified publish/subscribe scheme is that
Viewers automatically subscribe themselves as listeners
to Properties. Application programmers do not need to
explicitly listen to properties they receive data from. The
server manages the connections and determines which
Viewers to send data to.

Publishing events. Each Property holds an array of
listening routes. In this way, each Property is a virtual
event queue (see Socket Management below). The
destination of each event is not set by the Property.
Rather, the Property simply sets the route. When the
Event reaches the final event queue in its route, that
destination event queue reads the targeted Viewer from
the route and sets the actual reference of the destination.
The reason for this is that the Viewer is not a remote
object and cannot publish a distributed reference to itself.
Therefore, the reference cannot be set until the Event
reaches the JVM in which the Viewer exists.

Socket management. RMI currently works by
establishing a socket connection between a local object
and a remote object. Since many Viewers within the
system need to connect to many Properties, all available
sockets would soon be used up--especially on a server
where any number of clients may be connected at a time.
Socket limitations are one of the foremost reasons we
designed our own event system. To better manage socket
resources, only one JVM -wide event queue publishes
itself to JNDI. Viewers and Properties actually register
their references with their local event queues. Property
listener lists store routes rather than actual remote
0.00 (c) 2001 IEEE 6

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
references. These routes are passed through the messaging
system until events reach their destination JVM. The
destination queue maintains a list of GUIDs and actual
references, which it uses to set the real destination
reference of the event.

3.4.4. Events. Since destination objects in the framework
are always Viewers, we programmed the events to be
"smart". When an event reaches its destination JVM, the
event queue references it simply as general framework
event. The event queue sets the event's destination
reference and then runs its doEvent() method, which all
framework methods implement. The event acts upon the
destination object (opposite of traditional event theory,
where the destination acts upon an event). This change
significantly decreases bandwidth required for the event
system because additional listener interfaces are not
required.
 Because a Property represents an atomic piece of data
in hierarchical format, very few actions can be performed
on that data. These include: locking, updating the value,
adding children, and removing children. The framework
provides four events that match each of these actions.
While the framework allows for additional events to be
defined by applications, the default four events suffice for
most purposes.

4. CMI Collaborative Tools

 Previous CMI research led to the development of
collaborative modeling tools to support the development
of IDEF0 activity models and enterpris e data models
[1, 3, 4, 6, 11, 12]. These tools were designed to support
face-to-face meetings and have been used successfully to
gather important requirements information for multiple
systems development efforts. The development of the
CMI Collaborative Server facilitated the creation of
distributed collaborative tools; these types of tools are
now the primary focus of CMI collaborative tool
development. The following sections describe two new
tools that have recently been added to the CMI
collaborative toolset: SPA and GroupWriter.

4.1. Collaborative Distributed Scenario and
Process Analyzer (ColD SPA)

 Previous research in the development of IDEF0
activity models showed that they were very well suited
for describing "what" an organization does, but lacked
important details such as timing, sequence, and decision
logic of activities [1]. The objective in creating SPA was
to create a tool that supports process modeling and
captures different perspectives such as functional,
informational, behavioral, or organizational perspectives.

0-7695-0981-9/01 $1
Some of the earliest process models (e.g., data flow
diagrams) took a functional perspective. Business process
reengineering and other process improvement initiatives
have focused on the behavioral and organizational
perspectives for modeling general business processes.
These business process models include information such
as process sequence, decision criteria, and who performs
the process. SPA combines these perspectives with an
easy to use, highly customizable user interface that
supports collaborative, distributed, and asynchronous
process model development.

4.1.1. Primary SPA components. The user interface for
SPA is composed of three primary components: a
hierarchical process decomposition tree, a textual area for
describing various aspects of the process, and a graphical
process diagram. These three components are used to
capture detailed textual descriptions of the process and
also to show sequencing and decision logic.

Hierarchical process decomposition tree. The left side
of Figure 2 shows the hierarchical process decomposition
tree of SPA. This tree structure allows any type of
process, whether unstructured, semi-structured, or well
structured, to be iteratively decomposed into more
fundamental sub-processes. This decomposition may
result in many different levels of abstraction for the
process or task at hand. Users have the ability to create
new process nodes, to move nodes, and to further
decompose existing nodes until the necessary level of task
detail has been specified. Different users may work on
different parts of the process decomposition
simultaneously.

Figure 2. Hierarchical process tree (left) and textual
panels in SPA.

Textual process description panels. Once the process
has been sufficiently decomposed using the hierarchical
0.00 (c) 2001 IEEE 7

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
tree structure, specific textual data may be recorded for
any process or sub-process contained in the tree (right
side of Figure 2). There are two types of data that can be
recorded: fixed-field information and freeform text
information. Fixed-field information deals with the costs,
frequencies, and specific personnel roles that are involved
with each process or sub-process. Freeform textual
information can be used collaboratively to have users
record descriptions of each process, identify required
resources to perform each process, list inputs and outputs
of the process, etc. SPA has the flexibility to add any free-
form textual panel as needed to support the specific
requirements of each model.
 This approach lends a great deal of flexibility in the
use of SPA. Each different category of textual data is
captured using a different “tabbed panel.” Panels (which
correspond to different types of information being
recorded about a particular process/sub-process) may be
individually turned on or off. For example, all panels
could be made invisible except the “Description” panel to
help focus the users' attention on capturing only process
description data.

Graphical process diagram. The graphical process
diagram of SPA allows users to provide a specific
arrangement of the process and sub-process nodes that are
contained in the hierarchical tree view (see Figure 3). This
includes arranging processes into specific sequences or
order of operation. Divergence (decision points) and
convergence process flows may be indicated using
additional graphical symbols. This part of the SPA tool
allows the user to indicate which processes occur in
parallel, and which processes occur in series.

Figure 3. Graphical process diagram view of SPA.

4.1.2. Initial SPA results. The SPA prototype serves as
"proof-of-concept" that a web-based tool can be
developed to provide support for collaborative process

0-7695-0981-9/01 $1
modeling in both face-to-face and distributed settings.
Flexibility integrated into the architecture and design of
SPA enables it to support a much wider range of process
modeling and problem analysis tasks than originally
planned, and has, in effect, resulted in creation of a first
attempt at a "build-your-own" collaborative tool. The
SPA prototype has been used in several modeling
sessions, including same time/same place, same
time/different place, and different time/different place
settings.

4.2. GroupWriter

 CMI’s collaborative writing research has been
designed to advance the understanding of how individuals
learn to write together. Collaborative writing requires
negotiations between persons in the group as to content
and meaning of text. Collaboration affects the allocation
and distribution of attention as well as the common
ground that is essential for a shared understanding by the
group. Social dynamics are altered when using Group
Support Systems (GSS) to promote collaborative writing.
Studying the use of a collaborative writing tool provides
the opportunity to observe the writing process, and
reveals much about the special needs of writers.
 Collaborative writing is an challenging task. The tools
used to facilitate such sessions must be simple and
concise; there should be minimal complexity in learning
to use the tool with no technological distractions. In
collaborative writing, issues of group process,
communication, and organizational policies are
introduced into the mix. There are various strengths and
weaknesses in conjunction with using a collaborative
writing tool. Our research approach has focused on
collaborative writing, collection and analysis of
requirements for government documentation, review of
research and commercial group writing products, design
and testing of a Java GroupWriter tool, and development
of facilitation processes for use of the technology to
support the group writing system. GroupWriter is
collaborative writing software that was created to improve
the process of collaborative writing tasks within
organizations.

4.2.1. Primary GroupWriter components. The user
interface for GroupWriter is composed of three primary
components: a document outline tree, a textual input box
for each section of the outline, and an annotation dialog
box. These three components are used to capture textual
content for each section of the group document and to
allow participants to place annotations throughout the
document as needed.

GroupWriter document outline tree. The document
outline tree of GroupWriter is shown at the left side of
0.00 (c) 2001 IEEE 8

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Figure 4. The outline is used in much the same manner as
the outline view of MS Word or PowerPoint. Participants
use the outline to create the structure of the document
being developed. The outline is typically the first part of
the group writing process to be completed. Users can drag
and drop sections of the outline to arrange and rearrange
as necessary. Different users may work on different parts
of the outline simultaneously.

Figure 4. Main GroupWriter screen.

Textual input box. When the outline of the document is
complete, users can select any section of the outline and
enter the appropriate text (right side of Figure 4).
GroupWriter is not intended to be a full-featured word
processor. The focus of the tool is to allow users to
collaboratively write the document without being
concerned about formatting aspects of the document such
as font attributes and outline numbering. This allows
users to concentrate on what really needs to be contained
in the document rather than how the document will look
when completed.

Annotations. When creating a group document, it is
often necessary to limit which sections of the document
can be edited by users. Additionally, once a section has
been written and the authors feel that it is complete, it can
cause real problems if different users change the text. The
GroupWriter annotation feature provides a mechanism for
commenting on various sections when you do not want
the users to make any changes to the actual text. An
example of the GroupWriter annotation screen is shown
in Figure 5.

Other GroupWriter features. Though GroupWriter is
not a full-featured word processor, there is still a rich set
of features built into the tool. Because the documents are
often created in a distributed setting, the document owner
can control which users can work on which sections and

0-7695-0981-9/01 $1
can also lock sections of the document to ensure that no
changes are made once the group decides a section is
complete. Every time a user modifies a section and saves
the changes, the previous version the section is saved and
time-stamped. If changes are made to a section of the
document and the users later decide that they prefer a
previous version of the section, they can review the
Version History for that section and restore the desired
version to the document. GroupWriter allows users to
insert graphics into the document and a spell checking
utility is also included in the tool.

Figure 5. GroupWriter annotation screen

4.2.2. Initial GroupWriter results. Though the Java
version of GroupWriter is still under development,
previous versions of the tool have been used successfully
in meetings with various groups including DESCIM, U.S.
Army Training and Doctrine Command, and USA CERL.
Meeting participants found GroupWriter easy to use and
very useful for both creating and editing documents as a
group.

5. Conclusion and Future Research

 The CMI Collaborative Server provides common
collaborative services to real-time, multi-user, distributed
applications on the Internet. These applications are Java-
based and portable between environments and systems.
Several CMI applications are currently being written
within the Server framework, including a collaborative
word processor, a process flow application, and an online
code reviewing system. The Property hierarchy has
proved valuable in supporting the rapid application
development of these applications.
 The initial SPA prototype served as “proof-of-concept”
that a web-based tool could be developed to provide
support for collaborative process modeling in both face-
0.00 (c) 2001 IEEE 9

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
to-face and distributed settings. The flexibility integrated
into the architecture and design of SPA enables it to
support a much wider range of process modeling and
problem analysis tasks than originally planned, and has, in
effect, resulted in creation of a first attempt at a “build-
your-own” collaborative tool. The next version of the tool
and the new version of GroupWriter will build on the
lessons learned to create even more robust and useful
collaborative tools.

6. References

[1] Dean, D.L.; Lee, J.D.; Orwig, R.E.; and Vogel, D.R.,
"Technological support for group process modeling," Journal of
Management Information Systems, 11 (3), 1994-95, 43-63.
[2] Dean, D.L.; Lee, J.D.; Pendergast, M.O.; Hickey, A.M.; and
Nunamaker, J.F., Jr., "Enabling the effective involvement of
multiple users: Methods and tools for collaborative software
engineering," Journal of Management Information Systems, 14 (3),
1997-98, 179-222.
[3] Dean, D.L.; Lee, J.D.; and Vogel, D.R., Group tools and
methods to support data model development, standardization, and
review. In J.F. Nunamaker, Jr. and Sprague, R.H., Jr., (eds.),
Proceedings of the Thirtieth Annual Hawaii International
Conference on the System Sciences. Los Alamitos, CA: IEEE
Computer Society Press, 1997, 386-420.
[4] Dean, D.L.; Orwig, R.E.; Lee, J.D.; and Vogel, D.R., Modeling
with a group modeling tool: Group support, model quality, and
validation. In J.F. Nunamaker, Jr. and Sprague, R.H., Jr., (eds.),
Proceedings of the Twenty-Seventh Annual Hawaii International
Conference on the System Sciences. Los Alamitos, CA: IEEE
Computer Society Press, 1994, 214-224.
[5] Dean, D.L.; Orwig, R.E.; and Vogel, D.R., "Meeting methods
for use with EMS tools to enable rapid development of quality
business process models," Group Decision and Negotiation,
Forthcoming.
[6] Dean, D.L.; Pendergast, M.O.; and Aytes, K.J., "Computer-
supported collaborative modeling : the Enterprise Analysis
Project," ACM SIGOIS Bulletin, (April, Special Issue on Enterprise
Modeling), 1997.
[7] Hickey, A.M., Integrated Scenario And Process Modeling
Support For Collaborative Requirements Elicitation. Unpublished
Doctoral Dissertation, Management Information Systems
Department, Tucson, AZ: University of Arizona, 1999.
[8] Hickey, A.M.; Dean, D.L.; and Nunamaker, J.F., Jr., Setting a
foundation for collaborative scenario elicitation. In R.H. Sprague,
Jr., (ed.), Proceedings of the Thirty-Second Hawaii International
Conference on System Sciences [CD-ROM]. Los Alamitos, CA:
IEEE Computer Society, 1999.
[9] Hickey, A.M.; Dean, D.L.; and Nunamaker, J.F., Jr.,
"Establishing a foundation for collaborative scenario elicitation,"
DATABASE, Forthcoming.
[10] Hickey, A.M.; Dean, D.L.; and Vogel, D.R., Participative

0-7695-0981-9/01 $1
analysis of systems integration opportunities. , Proceedings of the
Americas Conference on Information Systems. Indianapolis, IN:
Association for Information Systems, 1997.
[11] Lee, J.D., Group data modeling support for business process
reengineering. Unpublished Doctoral Dissertation, Management
Information Systems Department, Tucson: University of Arizona,
1995.
[12] Lee, J.D.; Dean, D.L.; and Vogel, D.R., "Tools and methods
for group dat a modeling: A key enabler of enterprise modeling,"
SIGGROUP Bulletin, 18 (2), 1997, 59-63.
[13] Lee, J.D.; Hickey, A.M.; Zhang, D.; Santanen, E.; and Zhou,
L., "SPA: A tool for collaborative process model development".
Thirty-Third Annual Hawaii International Conference on System
Science, Wailea, Maui, HI: IEEE Computer Society, 2000.
[14] NCSA, "NCSA Habanero,"
http://havefun.ncsa.uiuc.edu/habanero/, National Center for
Supercomputing Applications, 2000.
[15] Nunamaker, J.F., Jr.; Briggs, R.O.; Mittleman, D.D.; Vogel,
D.R.; and Balthazard, P.A., "Lessons from a dozen years of group
support systems research: A discussion of lab and field findings,"
Journal of Management Information Systems, 13 (3), 1996-97,
163-207.
[16] Nunamaker, J.F.; Dennis, A.R.; Valacich, J.S.; Vogel, D.R.;
and George, J.F., "Electronic meeting systems to support group
work," Communications of the ACM, 34 (7), 1991, 40-61.
[17] Nunamaker, J.F., Jr.; Dennis, A.R.; Valacich, J.S.; Vogel,
D.R.; and George, J.F., Group support systems research:
Experience from the lab and field. In L.M. Jessup and Valacich,
J.S., (eds.), Group support systems: New perspectives . New York:
Macmillan, 1993, 125-145.

0.00 (c) 2001 IEEE 10

