Minitrack on Distributed Cooperative Work Environments

Alois Ferscha
Department of Applied Computer Science
University of Vienna
Lenauagasse 2/8, A-1080 Vienna, Austria
ferscha@ani.univie.ac.at

Business organizations are facing a global paradigm shift induced by phenomenal growth of networked information resources today. In response to competitive pressures, today’s business models are changing from corporate hierarchies towards more dynamic, more flexible and highly interactive structures of joint collaborations in geographically separated units. Arising from these models, new qualities of information technology are demanded to let organizations share information and enable people to work together in teams: We refer to these as “Distributed Cooperation Technologies”.

Distributed cooperation technology (DCT) represents the dominant direction for the evolution of IT and the building of information societies. Upcoming DCT will have to satisfy multiple users and multiple user groups in their desire for information, communication demands, synchronous and asynchronous interaction, and, seen from an enterprises’ view, enable cross-functionality of operational units responsible for the effective and efficient execution of business processes. As such, DCT cannot be considered as “yet-another” stage of computer or communication technology, but rather the application of hardware, software and telecommunication systems to support “cooperative units” in all matters of their (goal-driven) coexistence. No longer can producers, consumers, designers, manufacturing teams, marketing experts, sales persons, tellers – users for short – be considered “out-of-the-loop”. Nor can (static) solutions be considered operable if they do not easily adapt to ever-changing business requirements; solutions have to be responsive and must keep pace with evolving business processes rather than be prohibitive with respect to changes. No longer are computerized solutions for communication, collaboration and coordination “enough” for cooperative groups to be successful, an analysis of social processes and group mechanisms is demanded and must be respected in cooperative computing implementations.

The intent of this minitrack was to provide a forum for the exploration of new concepts, methods and techniques to cope with the challenge of tomorrow’s work platforms.

Thirteen contributions have been submitted by authors from Austria, Germany, Japan, Singapore, The Netherlands and the USA, after more than twenty authors announced papers via abstracts. About thirty reviewers with their expertise helped to select five full papers for publication in the proceedings, and for oral presentation at the conference. The accepted papers (in order of their presentation) are:

- An Ontological Framework for User-Driven System Specification A. de Moor, H. Weigand
- Formal Model, Language and Tools for Design Agent’s Scenarios in Call Center Systems N. Anisimov, K. Kishinski, A. Miloavski
- An Application Framework For Synchronous Collaboration Using Java Beans I. Marsic, B. Doro-honceanu

Each submitted paper was reviewed by at least three, and at most six reviewers. Due to the availability of papers in electronic format, the reviewing process could be managed almost exclusively by email.

The papers collected in this minitrack report on methodological progress and software technology issues in the context of distributed cooperative work environments, and highlight new concepts and applications. Their results present a further step towards overcoming the perceived obstacles in making multiuser cooperative work general purpose. I thank all the authors and referees for making this minitrack of high quality and topicality. My deepest thanks go to Gabi Kotsis for bringing up long but fruitful discussions concerning the paper submissions, their topicality, contribution and suitability for the minitrack. In addition – and as usual – all the credit goes to her for managing the administrative agenda.