Introduction to the Technology Supported Learning Minitrack

Robert O. Briggs, University of Arizona, Tucson, AZ 85721, bbriggs@mi.arizona.edu
Bradley C. Wheeler, Indiana University, Bloomington, IN 47405, bwheeler@indiana.edu
Bruce A Reinig, Hong Kong University of Science & Technology, Kowloon, Hong Kong, reinig@ust.hk
Eric L. Santanen, University of Arizona, Tucson, AZ 85721, santanen@mi.arizona.edu

As we press further into the network era of computing, continuing research is needed to understand how technology can assist the learning process. This set of papers addresses this need by looking at technology-supported learning from a variety of perspectives.

In “Using Asynchronous Conferencing to Promote Critical Thinking: A Case Study of Three Implementations in Higher Education,” Sloffer, Deuber, and Duffy describe experiences with a technology-based process to promote critical thinking. They assess the tool across three different courses and report improvements in critical thinking behavior.

Chapman, Selvarajah, and Webster used a controlled experiment to measure engagement as a means to enhance learner performance. Their paper, “Engagement in Multimedia Training Systems” describes the results of two experiments that contrasted passive and interactive media. They conclude that the form of media does affect engagement.

In “The Genius Approach: Building Learning Networks for Advanced Management Education” Seufert and Seufert examine the effects of Learning Networks in Management Education. Learning Networks involve a shift toward self-directed learning where the emphasis is placed on process-oriented rather than product-oriented teaching. This active process of knowledge construction leads to more interactive teams that are able to produce more comprehensive and creative approaches to solutions to problem cases.

With “Launching the Indiana AMBA: Learning With, Through, and About Technology,” Jessup and Wheeler detail the process and experience of launching a new degree program centered around technology-supported learning. The authors richly illustrate the organizational adoption and implementation process (and challenges) of launching the new degree program.

Corbitt, Wright, and Martz report on their work with collaborative software tools in “Addressing the Challenges of the Future: Implementing a Collaborative Student Environment at a University Business School.” This approach results in business school environments which are better equipped to modify their traditional curricula to better meet student and employer needs. The Collaborative Student Environment provides a more dynamic environment where a greater amount of high-quality work can be completed than in a typical class period.

Vogel, Wagner, and Ma explore the development and use of a prototype student directed learning environment in “Student-Directed Learning: Hong Kong Experiences.” Information technology which supports anytime and anywhere course delivery through higher levels of interactivity can sometimes displace the use of more “traditional” technologies such as e-mail and regular video. Surprisingly, however, the usefulness of any particular technology cannot be easily judged on an a-priori basis. Overall, combinations of process and technology allow students a better fit with their own individual learning styles.

In each of the past four years, submissions to the Technology-Supported Learning minitrack have increased. We trust that this year’s sessions will continue to fuel further research in this area.