The Impact of Organizational Politics on Information Systems Project Failure - A Case Study

Leoni Warne
e-mail: leoniw@ise.canberra.edu.au
tel: +61 6 2012392
University of Canberra

Dennis Hart
e-mail: d-hart@adfa.oz.au
tel: +61 6 2688058
University College, Australian Defence Force Academy

Abstract

The information systems literature has long been concerned with the factors that influence success or failure in information systems development projects. Factors such as top management support, user involvement and the use of effective development methodologies have often been quoted as essential for success. This paper reports a case study into an information system project in a large public sector organization which, at least initially, had most of the traditional success factors operating in its favour. Nevertheless, the project was terminated early without delivering any software product. The reasons for the termination seemed purely political and the research reported in this paper sets out to analyze what happened to the project and why. Data for the study was obtained by a combination of project document analysis, participant interviews and widely distributed questionnaires. The research design was based, in part, on an original theoretical model which uses the concept of "information wards" to link the nature of a proposed information system, and the type of organization in which it is embedded, to the political implications of the development effort. This model is described in the paper. The model postulates that the scope of a proposed information system can precipitate politically motivated activity in certain kinds of organizations. The results derived from the case study are consistent with this postulation so, it is argued, the information ward model offers a new approach to explaining the failure of the case study project and, possibly, the failure of other information systems development projects.

Introduction

Severe problems still exist with the system development process, despite the widespread penetration of computers and information systems into organizations and extensive experience in the production of these systems. Attempts to develop information systems continue to fail, sometimes spectacularly, and it is evident that this is rarely for technological reasons (Laudon [1], pp. 173; Sauer [2]; Keider [3]; Keen [4]). People and organizational factors are increasingly perceived to be a major cause of such failure (Davenport [5] & [6]; Sauer [2]; Markus [7]).

This paper reports on a research study exploring the interrelationship between organizational power and politics and the termination of a large information systems project. The case study project attempted to create an enterprise wide personnel and pay system in a large public sector organization. The project was terminated, in late 1992, after a life of two and a half years and the expenditure of several million dollars, without delivering a system. The reasons for the project's failure were examined in through a document study and interviews with participants. The findings from these activities were the basis for the formulation of a survey instrument that was sent to all project participants - senior management, developers and target end users (Warne [8]). The research was aimed at exploring the effect of organizational conflict and politics on the information system development process, and understanding the relationship between these factors. Several models were examined as part of this research. One of these, an original theoretical model using the concept of "information wards" (Hart [9]), is the focus of this paper. This new model is described and presented as a suitable tool for explaining the failure of the case study project.

Major Characteristics of the Case Study Project

Case study research is largely exploratory and descriptive. In this research it was used to investigate the perceived organizational factors influencing the failure of the project and to test the applicability of techniques that could prove to be useful instruments for examining these critical factors.
A failed project was selected for study because it made possible the study of perceived causes of failure and therefore the extent to which organizational power and conflict was perceived to be a factor. A failed project is finite, with limited but complete records, and so it is possible to perform a comprehensive research study. Sauer [2] (p134) further suggests that case studies of failure may be useful to raise problems about the phenomenon of failure; stimulate theories on the causes of failure and the cause effect chains which lead to failure; and stimulate the development of problem-solving mechanisms.

The Case Study Project Selected

Warne [8] describes the case study selected for investigation in detail. Briefly, it was a Public Sector Project that was initiated in June 1990 and was to have run for nine years. The project, hereafter referred to as the Case Study Project, was intended to create an infrastructure for integrating common personnel and payroll functions (while allowing for necessary differences between the different organizational areas involved) and to eliminate the inefficiency of many disparate systems performing similar functions.

A project management methodology involving a large component of user participation was adopted for the development. A High Level Design (HLD) study was conducted to identify a business case and strategies for project development, implementation and management. A Joint Application Design (JAD) approach was used in over 45 workshops involving 513 representatives to gather comprehensive user requirements and identify functional requirements. The HLD Report, completed in November 1991 and identified 49 functions that could be integrated and supported by information systems. Following the acceptance of the HLD by the project Steering Committee and project sponsors, approval was given to proceed and the Case Study Project embarked on the development of 19 sub-systems in five phases, for conclusion in 1999.

Concurrently, the project attempted to identify, to its clients' satisfaction, a level of manpower and operational cost savings that would support the business case for the project. However, the client groups would not all agree to a sufficient number of manpower savings to justify the business case, and the project was terminated, after only two and a half years, in November 1992. The premature termination of the Case Study Project appeared to be largely due to conflicts between the potential users and the developers of the project and, ultimately, the influence of the user representatives on the Project's Steering Committee.

Data Gathering Procedures

In the interests of enhancing the validity of this research, a triangulation approach was adopted for the study. Consequently, the case study approach was supported by a Document Study, Exploratory Interviews and a Survey (Warne [8]).

A thorough document study of project files and reports, Steering Committee Minutes, Project Management methodologies and other relevant project documentation was conducted. The Department concerned allowed full access to non-confidential files and documentation relating to the Case Study Project. This was facilitated by the fact that the Case Study Project files were still available at the original site.

Critical conversations and in-depth interviews were conducted with project developers in late 1992 and during 1993. The purpose of these discussions and interviews was to capture immediate reactions about the termination of the project. The interviews were valuable for the final formulation of the propositions being researched and in discovering the perceived organizational issues. The findings of these in-depth interviews were supported by conversations with project participants.

Finally, in 1994, as the final stage of the study, a detailed questionnaire was prepared, tested and then posted to the entire population of identified project participants. The purpose of this survey was to verify the participant perceptions about the organizational factors being studied. The questions were derived from preliminary research findings. The survey was sent to the two hundred and ninety project participants who were identified.

Although a checkbox style was used for the few demographic questions asked, a five point Likert-type Scale was chosen for the major part of the questionnaire. This form of question was chosen in an attempt to make a lengthy questionnaire seem less daunting to the respondent and to facilitate the process of answering the questions. The scale used included a "Don't Know or "Uncertain" response to allow respondents who did not understand the question, did not remember, or did not wish to commit themselves, an easy option without interrupting the flow of filling out the questionnaire. These responses are discounted in the final figures presented below.

The final questionnaire contained four demographic questions to identify the category of respondent (developer, end-user or senior management user), 59 Likert-type questions representing a scale for agreeing or disagreeing with the associated statement, and 10 blank lines for any qualitative comments respondents might want to make. The same questionnaire was sent to all
categories of respondent to avoid any perceived or actual bias, and to facilitate comparison of results.

There was a 65% response rate to the survey and 87% of completed questionnaires received were considered valid for research purposes. Surprisingly, a majority of responses (65% of valid responses, and 52% of all responses) included some degree of qualitative comments - often very lengthy and detailed. Obviously many of the respondents still had clear memories and definite opinions about the project despite the two-year time lapse since its demise. Analysis, to date, has been based primarily on descriptive statistics, although Chi-squared tests were applied to determine significance in several instances. The comparison of results between categories of respondents (senior management users, developers, and end users) produced interesting results. A selection of these follows. Percentages are rounded but do not always add up to 100%, since some respondents omitted questions and others gave two or more responses to a single question.

The Case Study Project and Traditional Contributors to Project Success

The Case Study Project, was examined to see if it exhibited the features generally identified in the literature as the determinants of success. These may be summarized as (Laudon & Laudon [1], p349-350; Ahituv & Neumann [10], p266-268; Kerzner [11], p505-517; Keider [3]):

- Alignment with business need;
- Top management support;
- User involvement;
- Effective project management;
- Use of a system development methodology.

Alignment with Business Need

It is known, from the analysis of the project documentation, that the project was initiated in response to a report commissioned by senior organizational management into a relatively loose conglomeration of pre-existing projects. Each of these pre-existing projects was trying to address particular areas of need in personnel and pay information systems development. A major aim of the Case Study Project was not only to improve information systems support at lower organizational levels but also to improve the flow of information to higher decision-making levels. Two very high level executives were, jointly, the project's sponsors. Furthermore, given that the personnel management and pay functions are essential infrastructural elements in any large organization, it is reasonable to conclude that the initiation of the Case Study Project was based on the perception of a genuine business need.

Top Management Support

Given the strong feelings expressed about top management support in the participant interviews, several questions on the survey addressed this issue. Responses to the survey were somewhat ambivalent. There was agreement (72% of all respondents) that the project had a great deal of support in its initial stages, but another question about whether top management supported the project brought a negative response (61% disagreeing). To some extent this latter answer is consistent with the fact that both end users and developers strongly agreed that some members of senior management had hidden agendas that conflicted with the development of the project (80% and 86% agreeing respectively). But this was not the view of senior managers themselves (69% disagreeing). A similar discrepancy occurred regarding a question about whether some senior managers were against the project from the start and did their best to undermine it. End users and developers agreed that this was so (75% and 71% respectively). However, senior managers themselves most certainly did not see themselves in this light (81% disagreeing). Against this must be set strong overall agreement that the Case Study Project was terminated because it was not supported by some powerful members of senior management (82% agreeing). Also, senior managers saw themselves as being interested in the project (73% agreeing). Against this must be set strong overall agreement that the Case Study Project was terminated because it was not supported by some powerful members of senior management (82% agreeing). Also, senior managers saw themselves as being interested in the project (73% agreeing), whereas end users and developers were rather less sure about this (only 57% of these categories agreeing).

The picture that emerges with respect to top management support for the Case Study Project is an interesting one. Management clearly sees itself as having been interested and supportive, at least initially. But this support obviously waned because the project was terminated for lack of it. End users and developers see nefarious motives ("hidden agendas" and "undermining") in this but plainly the senior managers themselves regard what happened, as well as the reasons for it, as entirely legitimate. This difference of view is reflected by the comments made by many respondents in the open-ended section of the survey. So, did the Case Study Project have top management support? The answer appears to be in two parts: "yes" (initially) and "no" (finally).

User Involvement

There was agreement across all categories of survey respondent on the following issues/questions:
There was collaboration and cooperation between users and development staff (70%);

User involvement in the project was genuine rather than simply token (71%);

There was good consultation between developers and users (79%);

Users participated in the system development process, but at a level dictated by the developers (73%);

Developers had more control over the system development process than the users (84%);

The survival of the Case Study Project was not contingent on more cooperation and collaboration between the developers and users (64%).

On this basis, it is possible to conclude that the Case Study Project undertook a degree of user involvement that should have given it good prospects of eventual success.

Effective Project Management

The management of the Case Study Project was evidently not problematic since the two survey questions addressing this issue both received unambiguous answers. Firstly, no category of respondent thought that the project was poorly managed (69% disagreed overall). And secondly, the proposition that the project would have survived if different project management principles had been used was similarly rejected (76% disagreed overall).

Use of a System Development Methodology

It is known from the project documentation, as well as participant interviews, that a systems development methodology was adopted and followed from the beginning (Warne [8]). The methodology selected was the UK Government standard, SSADM, developed and purveyed by the firm Learmonth Burchett Management Systems (LBMS). Additionally, as noted above, user requirements were investigated and defined using IBM’s Joint Application Design (JAD) method.

It was clear from the document study and interviews that the leaders of the Case Study Project were generally aware of recent thinking regarding system development methodologies, user involvement, documentation, project management techniques, and top management involvement and support. They took some pains to try to ensure that these aspects were adequately addressed in order to enhance the prospects of bringing their project to a successful conclusion. The responses to the research survey support the contention that, to a large degree, they succeeded in their efforts in these areas. But despite this apparent success the project was terminated before getting seriously underway and without delivering any working software. The remainder of this paper is concerned with explaining why.

A Theoretical Model of Information Systems in Organizations

To explain the failure of the Case Study Project it is possible to make use of a model based on the concept of "information wards" introduced by Hart [9]. The information ward concept is built upon the fundamental premise that organizations are, in general, pluralistic. They contain distinct individuals and groups that, while presumably subscribing to the overall business mission, nevertheless have their own goals and ideas about what should be done, by whom, when, and why. Such pluralism is, of course, a potential source of organizational conflict as well as vitality. These different individuals and groups work with certain subsets of the business processes and data set that belong to the organization as a whole, and each such individual or group will to a greater or lesser degree tend to regard that relevant subset as being "theirs". In other words, there will be a certain perceived ownership attached to their organizational role, the business processes that they perform, and the data sets supporting those business processes. In what follows these individuals or groups will be referred to generically as "players" and their existence plus the issue of business process and data ownership leads to the definition of an information ward.

Information Ward - Definition

An information ward (IW) is the totality of data and associated business processes that is perceived by an organizational player as being owned and controlled by it, or which it perceives it should own and control.

The choice of the term "ward" is driven by the notion of ownership and control in this definition. Information wards of different players are not necessarily distinct. For example, different players may each redundantly operate identical business processes; or one player may consider that processes or data currently owned by another should rightfully belong to them. But ownership, used in this context, is a matter of degree. Therefore a distinction, albeit coarse, within information wards can be made. Some
business processes and/or data will be considered by a player as central and crucial to their role and influence within the organization whereas others will be more peripheral. Because of their centrality, ownership and control of these processes and data will be defended by the player using whatever means prove necessary, including political action, against any threat of takeover by another player in the organization. This distinction leads to the concept of a "political information ward".

Political Information Ward - Definition

The political information ward (PIW) of an organizational player is the subset of that player's information ward (IW) for which action will be taken to defend against any threat to its ownership and control, or of which it will aggressively seek to gain ownership and control.

Figure 1. Information Ward and Political Information Ward of an organizational player.

According to this definition, also included in the PIW of a player are data and/or business processes of which it will aggressively seek to gain ownership and control. This takes account of situations where, for example, a player may consider that a role rightfully belonging to them has been usurped by another, and which they consider to be important enough to take action to regain. Like information wards, political information wards may also overlap; a situation highly likely to lead to conflict between the players concerned.

We may represent information wards and political information wards using Venn diagrams, as shown in Figure 1.

Overlapping Information Wards

Given, as argued above, that the information wards of distinct organizational players can overlap and that the information ward of each player is structured as shown in Figure 1, there are four basic ways in which the information wards of two players can be related. These are illustrated in Figure 2.

In Figure 2(a) neither information ward overlaps the other. That is, the data and processes that organizational players A and B perceive they own and control are distinct. In Figure 2(b), if ownership of the overlapping region becomes an issue between A and B then there is likely to be a negotiated settlement between them since neither sees the disputed region as critical and worth spending the effort to seriously defend. The situation shown in Figure 2(c) is more interesting. In this case some of the data and processes that are crucially important to player A (i.e. lie within PIW_A) also lie within IW_B. The implications of this are:

a. If player B (or player A) attempts to establish sole ownership and control over data items and processes within IW_B and IW_A but not within PIW_A then there is likely to be a negotiated resolution as discussed in relation to Figure 2(b);

b. If player A attempts to establish sole ownership and control over data items and processes within PIW_A and IW_B then player B will probably accede since they are not regarded as crucially important to the latter's organizational role, power or functioning; and

c. If player B attempts to establish sole ownership and control over data items and processes within PIW_A and IW_B then player A will resist using whatever methods are available and needed, including political action if necessary, to prevent the takeover from proceeding. While it is likely that A's resistance will succeed since winning is perceived by them (unlike B) as essential to their existence, the relative organizational power possessed by each player will have an influence on the outcome as well. For example, if B is very much the more powerful player then it may happen that the takeover effort succeeds in spite of the resistance raised by A.

Lastly, consider Figure 2(d). All of what has been said about Figures 2(b) and 2(c) also applies to the appropriate overlapping regions of this diagram as well. However, the new element here is in the overlap of PIW_A and PIW_B. The existence of this region indicates the certainty of conflict between players A and B in the event of an attempt to resolve who should have sole ownership and control of any of the data and/or processes lying within the overlap region between PIW_A and PIW_B. Who will win will depend on the relative organizational power possessed by the two contenders, and the skill with which that power is wielded. The struggle is highly likely to be a bitter and political one.
In general there may be more than two organizational players and in such cases the relationship between their respective information wards will present more complicated diagrams than those shown in Figure 2. Nonetheless, the increased complexity of the diagrams involves nothing new in kind and the relationships between the various players can be straightforwardly generalized from the two player possibilities already described.

Information Systems and Information Wards

Fundamentally, any organizational information system (IS) deals with a certain subset of the data and business processes of the organization in which it is embedded. Therefore an IS can be represented on an information ward diagram in a similar way to the IWs and PIWs themselves. However, to retain the distinction between an IW/PIW and an IS, the former will be represented as ellipses and the latter as rectangles on the information ward diagram. An example is shown in Figure 3.

It is argued in Hart [9] that if the IW of an organizational player overlaps the boundary of an IS on an information ward diagram then the player concerned is, in conventional terms, a stakeholder for that IS. But if the PIW of a player overlaps the boundary of an IS (e.g. Figure 3) then the player is

Figure 3. An information system on an information ward diagram

not only a stakeholder, but will also attempt to gain ownership or at least effective control of the IS if they do not already have it. The reason is simple. If the IS scope overlaps the PIW of a player, then by definition it is of critical importance to their organizational role and influence so its control cannot
be allowed to be vested in some other external player having different interests and views. Furthermore, if an IS overlaps the PIWs of two or more players, and they possess comparable power and influence in the organization, then conflict can be expected to ensue regarding ownership or control of the IS concerned.

The existence of organizational players and their corresponding IW/PIWs has clear consequences for attempts to develop widely scoped or enterprise-wide systems. Such systems by their very nature must impact on the IW, and probably also the PIW, of most if not all of the players in the organization. Diagrammatically, the situation is likely to be similar to that illustrated in Figure 4.

Even if, as shown in Figure 4, there is no overlap of player IWs or PIWs the information ward model still predicts a high probability of conflict concerning the development of such a system. The lack of overlap of IWs and PIWs means that each of the organizational players has, and is perceived both by itself as well as the other players to have, a well defined role and responsibility within the business. There is no basic disagreement concerning who does what within the organization, nor the data resources and business processes needed and owned by each player in order to fulfill their role. But despite this fundamental agreement, the scope of the enterprise-wide IS overlaps the PIW of all players and, according to the reasoning described above, each will attempt to gain ownership or at least effective control of it. Herein lies the source of conflict - the scope of the IS. If some of the IWs, or worse the PIWs, of the players overlap as well then the prospects for such a system development effort can only be even more problematic.

On the basis of the information ward model we can therefore propose that:

The larger the scope of a proposed information system, the more likely it is to be attended by organizational conflict regarding who should own and control it.

It may appear at this point that the information ward model predicts that all large scale (that is, having a broad scope) and enterprise-wide information systems are impossible to build without involving widespread organizational conflict and political activity. But this is not necessarily so because the type of the organization in which the IS is embedded has an important influence too. Different types of organizations may be expected to exhibit different internal information ward structures and this in turn may influence the difficulties to be faced when attempting IS developments of wide organizational scope.

![Figure 4. An enterprise-wide information system and information wards](image)
The Role of Organizational Type

Mintzberg [12] identifies seven different types, or "configurations", of organization:

- Entrepreneurial;
- Machine (or Machine Bureaucracy);
- Diversified;
- Professional;
- Innovative;
- Missionary (or Ideological); and
- Political.

Hart [13] discusses how each of these different organizational types can be related to the IW and PIW model, but of most relevance to this paper are the Machine and Diversified organizational types.

The Machine, or Machine Bureaucratic, Organization

The machine, or machine bureaucratic, organization is one that is highly formalized with sharp divisions of labour usually along functional lines. There is a high level of formalization of all aspects of organizational work.

Translated into the information ward model, this type of organization would be characterized by multiple players, each with very well defined IW and PIW boundaries, reflecting the high formalization of work, and each player's IW and PIW would be distinct from all of the others, reflecting the typically sharp division of labour along functional lines.

Given this it is evident, from the discussion above in relation to Figure 4, that attempts to construct broadly scope (across functional lines) or enterprise-wide information systems in this type of organization will very probably generate heated controversy, conflict, and political activity.

The Diversified Organization

This is the "conglomerate" or divisionalized organization:

"...not so much an integrated entity as a set of semi-autonomous units coupled together by a central administrative structure." (Mintzberg [12], p155)

Also:

"Each [division] is therefore relatively free of direct control by headquarters, or even of the need to coordinate activities with other divisions. Each, in other words, appears to be a self standing business." (Mintzberg [12], p156)

Mintzberg also makes the point that, despite this divisional semi-autonomy, headquarters does retain some important tasks. For example, exercising performance control, developing overall corporate strategy, and managing the movement of funds between divisions. Nonetheless, from the information ward model and top level point of view, it appears reasonable to regard each division as a distinct player within the overall conglomerate. The information ward diagram will therefore again appear similar to Figure 4, albeit for somewhat different reasons than for the machine bureaucratic organizational form. But the same conclusions apply: enterprise-wide, or cross divisional information systems are likely to be very difficult to construct compared to intra-player (i.e. divisional) ones in organizations that fit the "diversified" description.

Composite Organizational Forms

Most organizations will probably exhibit features of several of these types to varying degrees. They may be stable composites of the extremes or in transition between types. For example, an originally entrepreneurial organization may have increased in size to the point that it is having to formalize its operations and procedures, and is therefore moving towards becoming a machine bureaucracy. To the extent that a particular organization is a composite, the information ward structure may be expected to be an intermediate blend of the contributing information ward types.

In the opinion of the researchers, the Case Study Project existed in an organization combining the features of Mintzberg's Machine and Divisionalized types. Both of these types have been argued to exhibit identically structured information ward diagrams (Figure 4) and therefore the model predicts that the Case Study Project should have been surrounded by conflict and political activity because of the scope of the information system it was trying to develop.

The Case Study Project and Information Wards

A number of questions in the survey were targeted at confirming the relationship between the Case Study Project and the Information Ward structure surrounding it.

Firstly, there was virtually unanimous agreement among survey respondents that the project promoted the concept of a comprehensive and fully integrated human resource management and pay system across large parts of the organization (98.5% agreeing).
other words, the project was attempting to develop an enterprise-wide system. The authors’ assessment that the organization in which the project existed exhibits features of the Machine and Divisionalized categories of Mintzberg was supported by the following survey responses:

The Case Study Project had to deal with several essentially self-contained sections of the organization that were relatively independent and concerned with their own unique priorities and tasks (93% of all respondents agreeing);

The Case Study Project attempted to address the needs of several distinct and politically powerful parts of the organization (91% of all respondents agreeing).

The information ward model prediction that the Case Study Project system development effort would be attended by conflict and politically motivated actions is consistent with the following survey responses:

a. The Case Study Project was too broad and ambitious in scope (67% agreeing);

b. There was opposition from some of the user groups affected by the Case Study Project to the type of system being proposed (94% of all respondents agreeing);

c. Some potential users were concerned that if the Case Study Project was developed their power base in the organization would be eroded (67% overall agreeing; 92% of developers; 38% of senior management; 58% of end-users);

d. Many potential users had a limited view of the Case Study Project, looking at it only from their own perspective and not seeing it in broader corporate terms (84% agreeing);

e. The interests and requirements of some users would have been subordinated to those of others more powerful in the organization than themselves, if the project was ever completed (65% agreeing);

f. Users responsible for performing similar tasks in different parts of the organization often disagreed with each other in Joint Application Design (JAD) workshops (72% agreeing);

g. Disagreements regarding the project were resolved harmoniously (41% agreeing overall;

h. There was conflict amongst members of the Case Study Project Steering Committee (87% agreeing)

i. Differences of opinion between users and project development staff caused rifts to develop between them (62% agreeing overall; 100% of senior management; 46% of developers; 59% of end-users);

j. The Case Study Project’s inability to resolve the conflict surrounding it was the basic reason for its termination (59% of all respondents agreeing).

Discussion

Responses a and b above might be interpreted as indicating that the Case Study Project should not have been attempted at all. However, this is contradicted by the fact that the project enjoyed a great deal of support in its initial stages as well as by the response to the final survey question:

The Case Study Project should never have been initiated - it was doomed from the start (only 30% of all respondents agreeing).

The project was addressing a genuine business need. However, the seeds of its failure lay in the way it was trying to do this. The attempt to construct an all encompassing system was inherently power modifying (responses c and e) and in this area lies the fundamental cause of the conflict surrounding it (responses d, f-i). In terms of the information ward model it was the potential impact on multiple political information wards that ensured its demise.

Interestingly, there were substantial differences of perception between different categories of respondent with some questions (notably c, g and i). The reasons for these differences are not known but it is possible to speculate. For example, the divergence between the views of project developers and senior managers versus end-users regarding conflict resolution (response g) probably reflects the relative isolation of the latter group from disagreements and political maneuvering concerning the project. Similar reasoning probably also applies with respect to response i. However, the differences regarding response c are less easily explained. Perhaps project developers saw power based motives where there were none or, and more likely in the authors’ opinion, senior management did not recognize or admit to such motives where they did in fact exist. This latter interpretation is supported by the fact that a
significant majority of end-users agreed with the developers' rather than the senior managers' view on the matter.

Conclusion

The case study reported in this paper adds further weight to the assertion that organizational issues are an important factor impacting on information systems development success. But beyond this it shows that even if the factors that have been identified in the literature as being important determinants of project success are present, or largely so, then that success is still not guaranteed.

In the Case Study Project the business need was there, top management support was cultivated and (at least initially) was present, extensive user involvement was provided for, a well established commercial development methodology was followed, and modern project management techniques were used. But still it was the subject of conflict, progressively more intense political activity, and resistance leading to eventual failure. Why?

The demise of the Case Study Project can be explained by the "information ward" model of Hart [9] & [13]. In relation to this model the survey described (in part) above elicited responses showing that the project impacted on multiple information wards across the organization with resulting conflict ensuing. This conflict could not, in the end, be resolved indicating that it was in fact multiple political information wards that were at stake. According to the information ward model, such a situation for an information system project is untenable, as indeed proved to be the case.

The lesson here is that not only is it important for information system developments to take account of existing organizational politics, but the nature of the system being developed can itself be the fundamental cause of political problems. If the scope of the proposed system impacts upon multiple information wards, or more particularly political information wards, then trouble will ensue. Large scale enterprise-wide efforts are particularly risky for this reason. However, the actual risk depends on the organizational type because different types of organization have different information ward structures. Proponents of enterprise-wide information system development efforts must therefore be aware of the type of organization in which they are working, and the likelihood of their proposal impacting on multiple political information wards within it. Techniques for better assessing this type of risk before project initiation are the subject of continuing research by the authors.

Acknowledgement

Thanks are due, from both authors, to Dr Ed Lewis for his encouragement, advice and constructive criticism during the development of the information ward model (DH) and case study work (LW) described in part in this paper.

References

