The Community for Technology Leaders
Ninth IEEE International Symposium on High-Assurance Systems Engineering (HASE'05) (2004)
Tampa, Florida
Mar. 25, 2004 to Mar. 26, 2004
ISSN: 1530-2059
ISBN: 0-7695-2094-4
pp: 116-125
Duanqing Wu , Drexel University
Rosina Weber , Drexel University
Computer systems do not learn from previous experiences unless they are designed for this purpose. Computational intelligence systems (CIS) are inherently capable of dealing with imprecise contexts, creating a new solution in each new execution. Therefore, every execution of a CIS is valuable to be learned. We describe an architecture for designing CIS that includes a knowledge management (KM) framework, allowing the system to learn from its own experiences, and those learned in external contexts. This framework makes the system flexible and adaptable so it evolves, guaranteeing high levels of reliability when performing in a dynamic world. This KM framework is being incorporated into the computational intelligence tool for software testing at National Institute for Systems Test and Productivity. This paper introduces the framework describing the two underlying methodologies it uses, i.e. case-based reasoning and monitored distribution; it also details the motivation and requirements for incorporating the framework into CIS.
Duanqing Wu, Rosina Weber, "Knowledge Management for Computational Intelligence Systems", Ninth IEEE International Symposium on High-Assurance Systems Engineering (HASE'05), vol. 00, no. , pp. 116-125, 2004, doi:10.1109/HASE.2004.1281736
89 ms
(Ver 3.3 (11022016))