
On the use of hierarchy in timing verification with statically
sensitizable paths *

P. Johannes L. Claesen and H. De Man

IMEC+
Leuven
Belgium

IMEC /Kat holieke Univer sit ei t
Leuven
Belgium

Abstract 2 Motivation
In this paper a novel solution for the efficiency prob-

lems encountered in static timing verification is pre-
sented. The LSP algorithm is submitted to a critical
analysis. A new hierarchy based approach is presented
and its advantages and limitations are highlighted. Fi-
nally, some results on real life circuits are presented.

For the purpose of timing verification the circuit is
transformed in an acyclic event graph V x E in which:

1. V is the set of vertices v which represent transi-
tions on circuit nodes. These transitions can be
either up or down.

2. E is the set of edges e between vertices U . They
are weighted with the delay d and contain the
logic conditions on circuit nodes that are neces-
sary for the traversal of e.

For a better understanding the LSP algorithm used in
static timing verification is briefly sketched below.

1 Introduction
As integrated circuit designs evolve toward higher

performance and complexity, there is an increasing
need for fast and accurate timing analysis [l]. The
presence of many false paths in VLSI circuits calls
for complex algorithms to detect the longest true
paths in a circuit. Although the viable path con-
cept [2] and other dynamic false path approaches [3,4]
are theoretically more accurate, experimental evi-
dence [2, 3,4, 5, 61 suggests that static false path anal-
ysis is generally as accurate in real circuits. Therefore
the basis of the research presented in this paper is the
LSP algorithm introduced in [7].

The main performance problem of this algorithm is
explained in section 2. In section 3 an hierarchical a p
proach is presented which overcomes these problems.
This solution is quite different from the one published
in [6], which is potentially limited for certain classes
of circuits, e.g. multipliers. To the authors' knowl-
edge no algorithm for the exploitation of hierarchy in
the false path problem has been published by other
research groups. The results of the new approach and
its applicability are discussed in section 4. Finally,
some results on real life circuits and some conclusions
are given.

'Research sponsored by the EEC-SPRITE project
tInter University Micro-Electronics Center

1. In a vertex of the graph, choose the best edge
to add to the path, based on a quantity called
espezance which is the maximal length the
global path could attain if this edge is added
to the path.

2. If the chosen edge is compatible with the path
which was collected up to this point, add the
edge to the path. Go to 1 with the starting
vertex being the end vertex of the newly added
edge. If the edge is not compatible with the
recorded path, go to 3.

3. Try the other edges leaving the vertex in decreas-
ing order of esperance until a compatible edge is
found, and add it to the path. Go to 1 with the
starting vertex being the end vertex of the newly
added edge.

4. If an output is reached, stop.

5. If in a given vertex no edge can be found, remove
the last edge added to the path and go to 3 with
the starting vertex of the removed edge.

The performance problem of this algorithm is caused
by step 5 . This step causes the algorithm to inspect all
possible paths, in decreasing order of maximal attain-
able length, until a path is found that is completely
statically sensitizable. This backtracking makes the
complexity of the algorithm linear in the number of

4 0-8186-2610-0/92 $3.00 0 1992 IEEE

\O@ A B C D

Figure 1: Complexity in the LSP-algorithm

false paths that are longer than the longest sensitiz-
able path. Therefore the worst case behavior of the
algorithm is exponential with the size of the event

produced is minimal but the cpu-time required
to do so is also prohibitive.

graph. An example of this behavior is shown in fig-
ure 1 where o and 0 indicate conflicting propagation
conditions along edges from A to E. If each edge has
length 1, the LSP algorithm will first examine the 36
0 paths which cannot reach E before considering one
of the o Daths.

0 LSP based compaction: a path is created and
checked for sensitizabdity in a forward step. In
a backward step the graph is compacted taking
together events that refer to the same node, have
the same transition and have the same subgraph.

It must be noted that if there are no false paths in
the graph, the algorithm performs linearly with the
size of the graph.

A solution to this performance bottleneck is to have
the algorithm analyse a graph with as few false paths
as possible. An in loco removal of the false paths
would be unpractical for the same complexity reasons
as mentioned above. Therefore the analysis must be
performed on a graph which has as few as possible
false paths by construction.

It is possible to use hierarchy to obtain such a
graph: if a leaf cell of a circuit is completely free of
false paths, then false paths at higher level can only be
created through hierarchical assembly. The number of
false paths will thus be greatly reduced.

Consider for example the 4 bit carry bypass adder
section of figure 2. It consists of 4 full adders and
a nand-multiplexor bypass cell. The full adders each
contain 24 false paths and the bypass section contain
6 false paths. In a 4 bit carry bypass section they
introduce 346 false paths. Starting from leaf cells with
no false paths we only have 78 false paths to deal with
in the 4 bit section.

In the next section the construction of the timing
model without false paths is discussed.

3 Model generation
The generation of a timing model that is free of

false paths can be done in several ways:

0 Path Enumeration: all paths are enumerated,
the false ones are rejected. This is the sim-
plest method but has prohibitive memory re-
quirements.

0 Path Enumeration with Optimal Compaction:
this has been presented in [8]. The graph that is

All of the above methods result in a graph without
false paths in which events may be duplicated for the
preservation of the logic behavior. A small example of
such a transformation is shown in figure 3.

The algorithm that offers the best solution, TVG,
is presented below. It worksjin a similar way as the
redundancy removal algorithh presented in [9], but
acts on the event graph only and does not change the
behavior of the circuit in any way.

A dummy event, root is connected to all inputs by
edges that have neither delay nor propagation con-
ditions. A path is a collection of pairs of edges and
events. Node refers to the circuit node connected with
an event.

TVGOk
Copy t e root to new-root.
Start with:

event = root,
new-event = new-root,
path = {I

1. Forward Step:
V outgoing edges of event

if (edge is compatible with path)
add event and edge to path
copy edge and append the

new-event = copy of the
end event of edge

the incoming edge to newxvent

copy to new-event

is the copy of edge
else

if (all edges of event are examined
llevent is on an output)

go to 2.

5

tin

Figure 2: A 4 bit carry bypass section

h \ c ’

c o u t

r

b. a.

Figure 3: a. graph with logic incompatibilities, b. graph with same logic behavior without logic incompatibilities

2. Backward: if (new-event has outgoing edges)
Combine(new-event with the node it refers to)
if (all edges are visited)

pop (newzvent,edge) from the path
if (the starting event of edge

if (3event E event-list such that:
{the set of outgoing edges of event}

ad the incoming edges of

delete newzvent and its outgoing edges

return(new-rcmt) Jthe set of outgoing edges of new-event})

new-event to those of event
has no unvisited outgoing edges)

else go to 1.
else go to 2.

1
if (new-event is on an output)

if (event-list != NULL)
add the incoming edges of new-event

delete new-event
The procedure Combine is introduced so that an as
reduced as possible event graph results from the addi-
tion of new-event to the new graph.

to those of event-list

else add new-event to node
else delete new-event and its incoming edge

1 Combine(new -event ,node){
let event-list be the list of events

at node of same transition as newsvent.

6

In the next section the result of applying this algo-
rithm in the false path analysis is presented.

4 Experimental Results'
First two cases which pinpoint the usefulness of the

introduction of the hierarchy in the LSP analysis are
discussed. Next the application on some benchmarks
and a discussion of the applicability is given.
4.1

The circuit consists of 116 instances of 5 leaf cells:
a bypass, a carry even, a carry odd, a general function
block even and odd cell. The generation of timing
views for these cells from transistor level descriptions
takes 18s [lo], simulations included. The LSP analysis
of the graph of the full ALU takes 22804s > 6 hrs

are generated in the bypassed 4 bit sections of the
carry chain. Therefore a new timing view is generated
of those 4 carry cells and a bypass cell, in 1.25s.
The introduction of this new level of hierarchy reduces
the number of instances to 100, and the LSP analysis
time to 2.6s. The longest paths remain the same.
Gain on the LSP analysis: 22804/(1.25 + 2.6) = 3591.
4.2 18*16 booth multiplier

This is a standard cell design, in the MIETEC
2.4pm library with worst case parameters. A partic-
ularity is that the last row in the carry save adder
matrix is a 32 bit carry bypass adder. The multiplier
consists of 524 instances of 13 leaf cells, whose timing
views were generated in less than one CPU minute. The
LSP analysis of this multiplier did not terminate, the
PERT analysis took 5s. The resulting path was 380ns
long. In a multiplier many are false paths present.
Usually, the longest real path is approximately of the
same length as the longest false path. However, with
the bypass sections at the bottom of the carry save ma-
trix the longer false paths become much larger than
the longest real path and thus the LSP algorithm is
swamped, as explained in section 2. An extra level
of hierarchy is introduced and a timing view for the
carry bypass sections is generated. The LSP analysis
with this new level of hierarchy (446 instances) lasts
6s and yields a path of 26011s.
4.3 ISCAS-86 benchmarks

Several of the circuits of the ISCAS-85 benchmark
suite [ll] were analyzed. The results are presented in
table 1. The circuits C7552 and C6288 which were not
easily analyzed in [5, 61 were analyzed in very small
CPU times, despite the fact that no additional hierar-
chy was introduced. In our implementation the C7552
circuit contains 248399 false paths. Generating a tim-
ing view for this circuit took 31mn 51s.
4.4 Applicability

From the two examples above it is clear that the
hierarchical timing view approach can yield very large
improvements in the performance of the LSP algo-
rithm. It is also clear that the user must be aware
of the false path problem in order to make the largest
gain: it is of no use to make timing views of larger por-
tions of the circuit than those where the false paths

24 bit carry bypass alu

A close look at the graph reveals that all !t alse pat i. s

Al l the timer mentioned are cpn times on a DecStation 3100.

occur, as it will probably take longer to do so. There-
fore the user should know rather well where relevant
false paths occur.

In general, as the user is usually the designer of the
circuit, this is not too much of a problem.

5 Conclusion
Some additional results of the hierarchical analysis

on real life examples are presented in table 1. The
type column indicates if the designs were made with
standard cells (MIETEC 3u, worst case parameters,
hence the large delays or with the Cathedral [12, 131

mark. 5xplarea is optimized for optimal area, C7552,
C6288 and 5xpl-orig are only mapped to the library.

system. 5xpl is a we B known logic synthesis bench-

circuit

ERDIF
REC3
16*16 MULT
ARCODEC
C7552
C6288
5xplnrig
5xplarea
24 bit ALU
APLUSB
ARCODEC

~

St.C.
St.C.
St.C.
St.C.
St.C.
St.C.
St.C.
St.C.
Cath.
Cath.
Cath.

cells

931
2031
446
589
1588
2368
86
74
100
52
589

critical
path

16611s *
217ns *
260ns *
33111s *
140ns *
466ns *

49ns
109ns *
5311s *
32ns

9Ons *

cpu-
time
21s
32s
6s
9s
11s
12s

0.08s
0.11s
2.6s
0.5s
9s

Table 1: Results of the hierarchical analysis. A * in-
dicates that the longest(PERT) paths were false.

From these results it is clear that our new approach
to hierarchy in timing verification, targeted towards
the LSP algorithm, leads to accurate analysis of real
life circuits in acceptable CPU times.

References
[l] T. G. Szymanski. LEADOUT: a static timing

analyzer for MOS circuits. In Proc. of the IEEE
Int'l Conf. on CAD, pages 130-133, 1986.

[2] P. C. McGeer and R. K. Brayton. Efficient algo-
rithms for computing the longest viable path in
a combinational network. In Proc. 26th Design
Automation Conference, pages 561-567, 1989.

[3] S. Perremans, L. Claesen and H. De Man. Static
timing analysis of dynamically sensitizable paths.
In Proc. 26th Design Automation Conference,
pages 568-573, 1989.

[4] H. C. Yen, S . Ghanta and H. C. Du. On the
general false path problem in timing analysis.

In Proc. 26th Design Automation Conference,
pages 555-560, 1989.

[5] P. C. McGeer, R. K. Brayton, A. Saldanha, P.
Stephan and A. L. Sangiovanni-Vincentelli. Tim-
ing analysis and delay fault test generation using
path recursive functions. In Proc. of the Int’l.
Workshop on Logic Synthesis, MCNC North-
Carolina, 1991.

[6] Yun-Cheng Ju and Resve A. Saleh. Incremen-
tal techniques for the identification of statically
sensitirable critical paths. In Pm. 28th Design
Automation Conference, pages 541-546, 1991.

[7] J . Benkoski, E. vanden Meersch, L. Claesen and
H. De Man. Timing verification using statically
sensitirable paths. IEEE !kns. on Computer
Aided Design, Vol. CAD-9: pages 1073-1084, Oc-
tober 1990.

[8] J.-P Schupp, P. Das, P. Johannes, S . Perremans,
L. Claesen and H. De Man. Efficient false path
elimination algorithms for timing verification by
event graph preprocessing. INTEGRATION, the
VLSI Journal, Nr. 8: pages 173-187,1989.

[9] K. Keutrer, S . Malik and A. Saldanha. Is redun-
dancy necessary to reduce delay? IEEE h n s .
on Computer Aided Design, Vol. CAD-10: pages
427436, April 1991.

[lo] P. Johannes, P. Das, L. Claesen and H. De
Man. Slocop-11: a versatile timing verification
system for MOS VLSI. In Proc. of IEEE EDAC,
pages 518-523,1990.

Neutral netlist of
ten combinational benchmark circuits and a tar-
get translator in FORTRAN. In Proc. IEEE I d .
Symp. Circuits and Systems, June 1985.

[12] H. De Man, J.Rabaey, P. Six and L. Claesen.
Cathedral-11: a silicon compiler for digital signal
processing. IEEE Design and Test, pages 13-25,
December 1986.

[13] S . Note, F. Catthoor, G. Goossens and H. De
Man. Combined hardware selection and pipelin-
ing in high performance data-path design. In
Proc. IEEE ICCD, pages 328-331, September
1990.

[ll] F. Brgler and H. F’ujiwara.

8

