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Abstract 2 Motivation 
In this paper a novel solution for the efficiency prob- 

lems encountered in static timing verification is pre- 
sented. The LSP algorithm is submitted to a critical 
analysis. A new hierarchy based approach is presented 
and its advantages and limitations are highlighted. Fi- 
nally, some results on real life circuits are presented. 

For the purpose of timing verification the circuit is 
transformed in an acyclic event graph V x E in which: 

1. V is the set of vertices v which represent transi- 
tions on circuit nodes. These transitions can be 
either up or down. 

2. E is the set of edges e between vertices U .  They 
are weighted with the delay d and contain the 
logic conditions on circuit nodes that are neces- 
sary for the traversal of e. 

For a better understanding the LSP algorithm used in 
static timing verification is briefly sketched below. 

1 Introduction 
As integrated circuit designs evolve toward higher 

performance and complexity, there is an increasing 
need for fast and accurate timing analysis [l]. The 
presence of many false paths in VLSI circuits calls 
for complex algorithms to  detect the longest true 
paths in a circuit. Although the viable path con- 
cept [2] and other dynamic false path approaches [3,4] 
are theoretically more accurate, experimental evi- 
dence [2, 3,4,  5, 61 suggests that static false path anal- 
ysis is generally as accurate in real circuits. Therefore 
the basis of the research presented in this paper is the 
LSP algorithm introduced in [7]. 

The main performance problem of this algorithm is 
explained in section 2. In section 3 an hierarchical a p  
proach is presented which overcomes these problems. 
This solution is quite different from the one published 
in [6], which is potentially limited for certain classes 
of circuits, e.g. multipliers. To the authors' knowl- 
edge no algorithm for the exploitation of hierarchy in 
the false path problem has been published by other 
research groups. The results of the new approach and 
its applicability are discussed in section 4. Finally, 
some results on real life circuits and some conclusions 
are given. 
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1. In a vertex of the graph, choose the best edge 
to add to the path, based on a quantity called 
espezance which is the maximal length the 
global path could attain if this edge is added 
to the path. 

2. If the chosen edge is compatible with the path 
which was collected up to this point, add the 
edge to the path. Go to 1 with the starting 
vertex being the end vertex of the newly added 
edge. If the edge is not compatible with the 
recorded path, go to 3. 

3. Try the other edges leaving the vertex in decreas- 
ing order of esperance until a compatible edge is 
found, and add it to the path. Go to 1 with the 
starting vertex being the end vertex of the newly 
added edge. 

4. If an output is reached, stop. 

5. If in a given vertex no edge can be found, remove 
the last edge added to the path and go to 3 with 
the starting vertex of the removed edge. 

The performance problem of this algorithm is caused 
by step 5 .  This step causes the algorithm to inspect all 
possible paths, in decreasing order of maximal attain- 
able length, until a path is found that is completely 
statically sensitizable. This backtracking makes the 
complexity of the algorithm linear in the number of 
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Figure 1: Complexity in the LSP-algorithm 

false paths that are longer than the longest sensitiz- 
able path. Therefore the worst case behavior of the 
algorithm is exponential with the size of the event 

produced is minimal but the cpu-time required 
to do so is also prohibitive. 

graph. An example of this behavior is shown in fig- 
ure 1 where o and 0 indicate conflicting propagation 
conditions along edges from A to E. If each edge has 
length 1, the LSP algorithm will first examine the 36 
0 paths which cannot reach E before considering one 
of the o Daths. 

0 LSP based compaction: a path is created and 
checked for sensitizabdity in a forward step. In 
a backward step the graph is compacted taking 
together events that refer to the same node, have 
the same transition and have the same subgraph. 

It must be noted that if there are no false paths in 
the graph, the algorithm performs linearly with the 
size of the graph. 

A solution to this performance bottleneck is to have 
the algorithm analyse a graph with as few false paths 
as possible. An in loco removal of the false paths 
would be unpractical for the same complexity reasons 
as mentioned above. Therefore the analysis must be 
performed on a graph which has as few as possible 
false paths by construction. 

It is possible to use hierarchy to obtain such a 
graph: if a leaf cell of a circuit is completely free of 
false paths, then false paths at  higher level can only be 
created through hierarchical assembly. The number of 
false paths will thus be greatly reduced. 

Consider for example the 4 bit carry bypass adder 
section of figure 2. It consists of 4 full adders and 
a nand-multiplexor bypass cell. The full adders each 
contain 24 false paths and the bypass section contain 
6 false paths. In a 4 bit carry bypass section they 
introduce 346 false paths. Starting from leaf cells with 
no false paths we only have 78 false paths to deal with 
in the 4 bit section. 

In the next section the construction of the timing 
model without false paths is discussed. 

3 Model generation 
The generation of a timing model that is free of 

false paths can be done in several ways: 

0 Path Enumeration: all paths are enumerated, 
the false ones are rejected. This is the sim- 
plest method but has prohibitive memory re- 
quirements. 

0 Path Enumeration with Optimal Compaction: 
this has been presented in [8]. The graph that is 

All of the above methods result in a graph without 
false paths in which events may be duplicated for the 
preservation of the logic behavior. A small example of 
such a transformation is shown in figure 3. 

The algorithm that offers the best solution, TVG, 
is presented below. It worksjin a similar way as the 
redundancy removal algorithh presented in [9], but 
acts on the event graph only and does not change the 
behavior of the circuit in any way. 

A dummy event, root is connected to all inputs by 
edges that have neither delay nor propagation con- 
ditions. A path is a collection of pairs of edges and 
events. Node refers to the circuit node connected with 
an event. 

TVGOk 
Copy t e root to new-root. 
Start with: 

event = root, 
new-event = new-root, 
path = {I 

1. Forward Step: 
V outgoing edges of event 

if (edge is compatible with path) 
add event and edge to path 
copy edge and append the 

new-event = copy of the 
end event of edge 

the incoming edge to newxvent 

copy to new-event 

is the copy of edge 
else 

if (all edges of event are examined 
llevent is on an output) 

go to 2. 
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Figure 2: A 4 bit carry bypass section 
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Figure 3: a. graph with logic incompatibilities, b. graph with same logic behavior without logic incompatibilities 

2. Backward: if (new-event has outgoing edges) 
Combine(new-event with the node it refers to) 
if (all edges are visited) 

pop (newzvent,edge) from the path 
if (the starting event of edge 

if ( 3event E event-list such that: 
{the set of outgoing edges of event} 

ad the incoming edges of 

delete newzvent and its outgoing edges 

return(new-rcmt) Jthe set of outgoing edges of new-event}) 

new-event to those of event 
has no unvisited outgoing edges) 

else go to 1. 
else go to 2. 

1 
if (new-event is on an output) 

if (event-list != NULL) 
add the incoming edges of new-event 

delete new-event 
The procedure Combine is introduced so that an as 
reduced as possible event graph results from the addi- 
tion of new-event to the new graph. 

to those of event-list 

else add new-event to node 
else delete new-event and its incoming edge 

1 Combine(new -event ,node){ 
let event-list be the list of events 

at  node of same transition as newsvent. 
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In the next section the result of applying this algo- 
rithm in the false path analysis is presented. 

4 Experimental Results' 
First two cases which pinpoint the usefulness of the 

introduction of the hierarchy in the LSP analysis are 
discussed. Next the application on some benchmarks 
and a discussion of the applicability is given. 
4.1 

The circuit consists of 116 instances of 5 leaf cells: 
a bypass, a carry even, a carry odd, a general function 
block even and odd cell. The generation of timing 
views for these cells from transistor level descriptions 
takes 18s [lo], simulations included. The LSP analysis 
of the graph of the full ALU takes 22804s > 6 hrs 

are generated in the bypassed 4 bit sections of the 
carry chain. Therefore a new timing view is generated 
of those 4 carry cells and a bypass cell, in 1.25s. 
The introduction of this new level of hierarchy reduces 
the number of instances to  100, and the LSP analysis 
time to 2.6s. The longest paths remain the same. 
Gain on the LSP analysis: 22804/(1.25 + 2.6) = 3591. 
4.2 18*16 booth multiplier 

This is a standard cell design, in the MIETEC 
2.4pm library with worst case parameters. A partic- 
ularity is that the last row in the carry save adder 
matrix is a 32 bit carry bypass adder. The multiplier 
consists of 524 instances of 13 leaf cells, whose timing 
views were generated in less than one CPU minute. The 
LSP analysis of this multiplier did not terminate, the 
PERT analysis took 5s. The resulting path was 380ns 
long. In a multiplier many are false paths present. 
Usually, the longest real path is approximately of the 
same length as the longest false path. However, with 
the bypass sections at the bottom of the carry save ma- 
trix the longer false paths become much larger than 
the longest real path and thus the LSP algorithm is 
swamped, as explained in section 2. An extra level 
of hierarchy is introduced and a timing view for the 
carry bypass sections is generated. The LSP analysis 
with this new level of hierarchy (446 instances) lasts 
6s and yields a path of 26011s. 
4.3 ISCAS-86 benchmarks 

Several of the circuits of the ISCAS-85 benchmark 
suite [ll] were analyzed. The results are presented in 
table 1. The circuits C7552 and C6288 which were not 
easily analyzed in [5, 61 were analyzed in very small 
CPU times, despite the fact that no additional hierar- 
chy was introduced. In our implementation the C7552 
circuit contains 248399 false paths. Generating a tim- 
ing view for this circuit took 31mn 51s. 
4.4 Applicability 

From the two examples above it is clear that the 
hierarchical timing view approach can yield very large 
improvements in the performance of the LSP algo- 
rithm. It is also clear that the user must be aware 
of the false path problem in order to make the largest 
gain: it is of no use to  make timing views of larger por- 
tions of the circuit than those where the false paths 

24 bit carry bypass alu 

A close look at the graph reveals that all !t alse pat i. s 

Al l  the timer mentioned are cpn times on a DecStation 3100. 

occur, as it will probably take longer to do so. There- 
fore the user should know rather well where relevant 
false paths occur. 

In general, as the user is usually the designer of the 
circuit, this is not too much of a problem. 

5 Conclusion 
Some additional results of the hierarchical analysis 

on real life examples are presented in table 1. The 
type column indicates if the designs were made with 
standard cells (MIETEC 3u, worst case parameters, 
hence the large delays or with the Cathedral [12, 131 

mark. 5xplarea is optimized for optimal area, C7552, 
C6288 and 5xpl-orig are only mapped to  the library. 

system. 5xpl is a we B known logic synthesis bench- 

circuit 

ERDIF 
REC3 
16*16 MULT 
ARCODEC 
C7552 
C6288 
5xplnrig 
5xplarea 
24 bit ALU 
APLUSB 
ARCODEC 

~ 

St.C. 
St.C. 
St.C. 
St.C. 
St.C. 
St.C. 
St.C. 
St.C. 
Cath. 
Cath. 
Cath. 

# cells 

931 
2031 
446 
589 
1588 
2368 
86 
74 
100 
52 
589 

critical 
path 

16611s * 
217ns * 
260ns * 
33111s * 
140ns * 
466ns * 

49ns 
109ns * 
5311s * 
32ns 

9Ons * 

cpu- 
time 
21s 
32s 
6s 
9s 
11s 
12s 

0.08s 
0.11s 
2.6s 
0.5s 
9s 

Table 1: Results of the hierarchical analysis. A * in- 
dicates that the longest(PERT) paths were false. 

From these results it is clear that our new approach 
to hierarchy in timing verification, targeted towards 
the LSP algorithm, leads to accurate analysis of real 
life circuits in acceptable CPU times. 
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