The Community for Technology Leaders
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) (2018)
Paris, France
Oct 7, 2018 to Oct 9, 2018
ISSN: 2575-8454
ISBN: 978-1-5386-4230-6
pp: 159-169
ABSTRACT
We study bi-Hölder homeomorphisms between the unit spheres of finite-dimensional normed spaces and use them to obtain better data structures for the high-dimensional Approximate Near Neighbor search (ANN) in general normed spaces. Our main structural result is a finite-dimensional quantitative version of the following theorem of Daher (1993) and Kalton (unpublished). Every d-dimensional normed space X admits a small perturbation Y such that there is a bi-Holder homeomorphism with good parameters between the unit spheres of Y and Z, where Z is a space that is close to ℓ_2^d. Furthermore, the bulk of this article is devoted to obtaining an algorithm to compute the above homeomorphism in time polynomial in d. Along the way, we show how to compute efficiently the norm of a given vector in a space obtained by the complex interpolation between two normed spaces. We demonstrate that, despite being much weaker than bi-Lipschitz embeddings, such homeomorphisms can be efficiently utilized for the ANN problem. Specifically, we give two new data structures for ANN over a general d-dimensional normed space, which for the first time achieve approximation d^o(1), thus improving upon the previous general bound O(sqrtd) that is directly implied by John's theorem.
INDEX TERMS
approximation theory, data structures
CITATION

A. Andoni, A. Naor, A. Nikolov, I. Razenshteyn and E. Waingarten, "Hölder Homeomorphisms and Approximate Nearest Neighbors," 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), Paris, France, 2019, pp. 159-169.
doi:10.1109/FOCS.2018.00024
333 ms
(Ver 3.3 (11022016))