The Community for Technology Leaders
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) (2018)
Paris, France
Oct 7, 2018 to Oct 9, 2018
ISSN: 2575-8454
ISBN: 978-1-5386-4230-6
pp: 101-112
ABSTRACT
Motivated by the study of matrix elimination orderings in combinatorial scientific computing, we utilize graph sketching and local sampling to give a data structure that provides access to approximate fill degrees of a matrix undergoing elimination in polylogarithmic time per elimination and query. We then study the problem of using this data structure in the minimum degree algorithm, which is a widely-used heuristic for producing elimination orderings for sparse matrices by repeatedly eliminating the vertex with (approximate) minimum fill degree. This leads to a nearly-linear time algorithm for generating approximate greedy minimum degree orderings. Despite extensive studies of algorithms for elimination orderings in combinatorial scientific computing, our result is the first rigorous incorporation of randomized tools in this setting, as well as the first nearly-linear time algorithm for producing elimination orderings with provable approximation guarantees. While our sketching data structure readily works in the oblivious adversary model, by repeatedly querying and greedily updating itself, it enters the adaptive adversarial model where the underlying sketches become prone to failure due to dependency issues with their internal randomness. We show how to use an additional sampling procedure to circumvent this problem and to create an independent access sequence. Our technique for decorrelating interleaved queries and updates to this randomized data structure may be of independent interest.
INDEX TERMS
approximation theory, combinatorial mathematics, computational complexity, data structures, graph theory, query processing, randomised algorithms, sparse matrices
CITATION

M. Fahrbach, G. L. Miller, R. Peng, S. Sawlani, J. Wang and S. C. Xu, "Graph Sketching against Adaptive Adversaries Applied to the Minimum Degree Algorithm," 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), Paris, France, 2019, pp. 101-112.
doi:10.1109/FOCS.2018.00019
181 ms
(Ver 3.3 (11022016))