2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (2011)

Palm Springs, California USA

Oct. 22, 2011 to Oct. 25, 2011

ISSN: 0272-5428

ISBN: 978-0-7695-4571-4

pp: 344-353

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/FOCS.2011.75

ABSTRACT

State conversion generalizes query complexity to the problem of converting between two input-dependent quantum states by making queries to the input. We characterize the complexity of this problem by introducing a natural information-theoretic norm that extends the Schur product operator norm. The complexity of converting between two systems of states is given by the distance between them, as measured by this norm. In the special case of function evaluation, the norm is closely related to the general adversary bound, a semi-definite program that lower-bounds the number of input queries needed by a quantum algorithm to evaluate a function. We thus obtain that the general adversary bound characterizes the quantum query complexity of any function whatsoever. This generalizes and simplifies the proof of the same result in the case of boolean input and output. Also in the case of function evaluation, we show that our norm satisfies a remarkable composition property, implying that the quantum query complexity of the composition of two functions is at most the product of the query complexities of the functions, up to a constant. Finally, our result implies that discrete and continuous-time query models are equivalent in the bounded-error setting, even for the general state-conversion problem.

INDEX TERMS

quantum query complexity, adversary bound, span program, semi-definite program, quantum walk, Schur product operator norm

CITATION

M. Szegedy, R. Špalek, B. W. Reichardt, T. Lee and R. Mittal, "Quantum Query Complexity of State Conversion,"

*2011 IEEE 52nd Annual Symposium on Foundations of Computer Science(FOCS)*, Palm Springs, California USA, 2011, pp. 344-353.

doi:10.1109/FOCS.2011.75

CITATIONS

SEARCH