2013 IEEE 54th Annual Symposium on Foundations of Computer Science (2005)

Pittsburgh, Pennsylvania, USA

Oct. 23, 2005 to Oct. 25, 2005

ISBN: 0-7695-2468-0

pp: 73-82

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/SFCS.2005.36

Moses Charikar , Princeton University

Nir Ailon , Princeton University

ABSTRACT

<p>Given dissimilarity data on pairs of objects in a set, we study the problem of fitting a tree metric to this data so as to minimize additive error (i.e. some measure of the difference between the tree metric and the given data). This problem arises in constructing an M-level hierarchical clustering of objects (or an ultrametric on objects) so as to match the given dissimilarity data - a basic problem in statistics. Viewed in this way, the problem is a generalization of the correlation clustering problem (which corresponds to M = 1). We give a very simple randomized combinatorial algorithm for the Mlevel hierarchical clustering problem that achieves an approximation ratio of M+2. This is a generalization of a previous factor 3 algorithm for correlation clustering on complete graphs. The problem of fitting tree metrics also arises in phylogeny where the objective is to learn the evolution tree by fitting a tree to dissimilarity data on taxa. The quality of the fit is measured by taking the \ellp norm of the difference between the tree metric constructed and the given data. Previous results obtained a factor 3 approximation for finding the closest tree tree metric under the \ell\infty norm. No non-trivial approximation for general \ellp norms was known before. We present a novel LP formulation for this problem and obtain an O(({\rm{log n log log n}})^{1/p} ) approximation using this. En route, we obtain an O(({\rm{log n log log n}})^{1/p} ) approximation for the closest ultrametric under the \ellp norm. Our techniques are based on representing and viewing an ultrametric as a hierarchy of clusterings, and may be useful in other contexts.</p>

INDEX TERMS

null

CITATION

Moses Charikar,
Nir Ailon,
"Fitting tree metrics: Hierarchical clustering and Phylogeny",

*2013 IEEE 54th Annual Symposium on Foundations of Computer Science*, vol. 00, no. , pp. 73-82, 2005, doi:10.1109/SFCS.2005.36