The Community for Technology Leaders
2013 IEEE 54th Annual Symposium on Foundations of Computer Science (2000)
Redondo Beach, California
Nov. 12, 2000 to Nov. 14, 2000
ISSN: 0272-5428
ISBN: 0-7695-0850-2
pp: 219
T.M. Chan , Dept. of Comput. Sci., Waterloo Univ., Ont., Canada
Analyzing the worst-case complexity of the k-level in a planar arrangement of n curves is a fundamental problem in combinatorial geometry. We give the first subquadratic upper bound (roughly O(nk/sup 1-2/3/*)) for curves that are graphs of polynomial functions of an arbitrary fixed degree s. Previously, nontrivial results were known only for the case s=1 and s=2. We also improve the earlier bound for pseudo-parabolas (curves that pairwise intersect at most twice) to O(nk/sup 7/9/log/sup 2/3/ k). The proofs are simple and rely on a theorem of Tamaki and Tokuyama on cutting pseudo-parabolas into pseudo-segments, as well as a new observation for cutting pseudo-segments into pieces that can be extended to pseudo-lines. We mention applications to parametric and kinetic minimum spanning trees.
computational complexity; computational geometry; polynomials; worst-case complexity; planar arrangement; combinatorial geometry; subquadratic upper bound; polynomial functions; pseudo-parabolas; pseudo-segments; kinetic minimum spanning trees
T.M. Chan, "On levels in arrangements of curves", 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, vol. 00, no. , pp. 219, 2000, doi:10.1109/SFCS.2000.892109
89 ms
(Ver 3.3 (11022016))